咨询与建议

限定检索结果

文献类型

  • 336 篇 会议

馆藏范围

  • 336 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 302 篇 工学
    • 225 篇 控制科学与工程
    • 178 篇 计算机科学与技术...
    • 123 篇 软件工程
    • 41 篇 电气工程
    • 35 篇 信息与通信工程
    • 21 篇 机械工程
    • 21 篇 生物工程
    • 19 篇 电子科学与技术(可...
    • 17 篇 化学工程与技术
    • 16 篇 生物医学工程(可授...
    • 14 篇 动力工程及工程热...
    • 13 篇 石油与天然气工程
    • 13 篇 交通运输工程
    • 10 篇 航空宇航科学与技...
    • 7 篇 力学(可授工学、理...
    • 7 篇 仪器科学与技术
    • 7 篇 材料科学与工程(可...
    • 7 篇 安全科学与工程
  • 200 篇 理学
    • 150 篇 系统科学
    • 119 篇 数学
    • 34 篇 统计学(可授理学、...
    • 23 篇 生物学
    • 17 篇 物理学
    • 11 篇 化学
  • 51 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 14 篇 医学
    • 13 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 7 篇 农学
    • 7 篇 作物学
  • 5 篇 经济学
  • 4 篇 法学
  • 2 篇 教育学

主题

  • 12 篇 reinforcement le...
  • 10 篇 deep learning
  • 10 篇 multi agent syst...
  • 10 篇 controllers
  • 8 篇 failure analysis
  • 8 篇 sliding mode con...
  • 8 篇 machine learning
  • 6 篇 nonlinear system...
  • 6 篇 data-driven
  • 5 篇 learning systems
  • 5 篇 closed loop syst...
  • 5 篇 state estimation
  • 5 篇 real-time system...
  • 5 篇 linear systems
  • 4 篇 big data
  • 4 篇 neural networks
  • 4 篇 learning algorit...
  • 4 篇 photovoltaic sys...
  • 4 篇 linear matrix in...
  • 4 篇 lyapunov functio...

机构

  • 6 篇 school of electr...
  • 6 篇 school of automa...
  • 5 篇 school of automa...
  • 4 篇 school of automa...
  • 4 篇 college of engin...
  • 4 篇 college of infor...
  • 4 篇 state key labora...
  • 4 篇 beijing key lab ...
  • 4 篇 college of infor...
  • 4 篇 school of contro...
  • 3 篇 guangdong univ t...
  • 3 篇 college of artif...
  • 3 篇 school of electr...
  • 3 篇 school of electr...
  • 3 篇 changchun univer...
  • 3 篇 ningbo universit...
  • 3 篇 college of infor...
  • 3 篇 dalian maritime ...
  • 3 篇 guangdong univ t...
  • 2 篇 shenyang univ ch...

作者

  • 7 篇 wang li
  • 7 篇 bu xuhui
  • 6 篇 chi ronghu
  • 6 篇 ge zhiqiang
  • 5 篇 lu renquan
  • 5 篇 ren hongru
  • 5 篇 sun zhongbo
  • 5 篇 huang deqing
  • 5 篇 song zhihuan
  • 4 篇 zhao chunhui
  • 4 篇 liu keping
  • 4 篇 ren xuemei
  • 4 篇 ji honghai
  • 4 篇 hou zhongsheng
  • 4 篇 honghai ji
  • 4 篇 li wang
  • 4 篇 yao le
  • 4 篇 liu yi
  • 3 篇 li jiapeng
  • 3 篇 wang jing

语言

  • 328 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"任意字段=8th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2019"
336 条 记 录,以下是251-260 订阅
排序:
A Hybrid MTS Anomaly Detection Method Based on Reconstruction and Adaptive Spatial-Temporal Graph Network  13
A Hybrid MTS Anomaly Detection Method Based on Reconstructio...
收藏 引用
13th ieee data driven control and learning systems conference, ddcls 2024
作者: Yuan, X. Ning, Ke Wei, K. He, Yan-Lin Zhu, Qun-Xiong Zhang, Ming-Qing Luo, Yi Zhang, Yang College of Information Science and Technology Beijing University of Chemical Technology Beijing100020 China Ministry of Education of China Engineering Research Center of Intelligent Pse Beijing100020 China Macao Polytechnic University Faculty of Applied Sciences 999078 China Research Institute of Mine Big Data Chinese Institute of Coal Science Beijing100013 China
Effective anomaly detection of multivariate time series data is crucial for modern industrial applications. However, existing works usually ignore spatial and temporal dependencies of series. the data with complicated... 详细信息
来源: 评论
$H_{\infty}$ control for Singular Markovian Jump Delay systems with Mode-Dependent Derivative-Term Coefficient
$H_{\infty}$ Control for Singular Markovian Jump Delay Syste...
收藏 引用
data driven control and learning systems (ddcls)
作者: Yufeng Tian Zhanshan Wang College of Information Science and Engineering Northeastern University Shenyang China
this paper focuses on the $H_{\infty}$ control problem of singular Markovian jump delay systems with mode-dependent derivative-term coefficient through an extended decomposition system. By computing a proper Lyapuno... 详细信息
来源: 评论
A Comparison of data Imputation Methods Utilizing Machine learning for a New IoT System Platform  8
A Comparison of Data Imputation Methods Utilizing Machine Le...
收藏 引用
8th International conference on control, Decision and Information Technologies (CoDIT)
作者: Kalay, Sena Cinar, Eyup Saricicek, Inci Eskisehir Osmangazi Univ Dept Comp Engn Eskisehir Turkey Ctr Intelligent Syst Applicat Res CISAR Eskisehir Turkey Eskisehir Osmangazi Univ Dept Ind Engn Eskisehir Turkey
IoT systems are being used widely place in manufacturing. the volume of the sensor data in these systems is significant. In real-life scenarios, missing sensor data can cause problems, especially for data-driven machi... 详细信息
来源: 评论
HybridRTS: A Hybrid Congestion control Framework with Rule and Reinforcement learning for Low-Latency WebRTC Live Video Streaming  24
HybridRTS: A Hybrid Congestion Control Framework with Rule a...
收藏 引用
24th ieee International conference on High Performance Computing and Communications, 8th ieee International conference on data Science and systems, 20th ieee International conference on Smart City and 8th ieee International conference on Dependability in Sensor, Cloud and Big data systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Zhang, Kaizhe Wang, Zhiwen Ma, Hansen Du, Haipeng Zhang, Weizhan School of Computer Science and Technology Bdke Lab China School of Continuing Education Xi'an Jiaotong University Xi'an710049 China
Web Real-Time Communication (WebRTC) technology meets real-time communication standards and is currently supported by mainstream browsers to meet low-latency live streaming requirements. the WebRTC Google Congestion C... 详细信息
来源: 评论
A Quality Prediction Hybrid Model of Manufacturing Process Based on Genetic Programming  11
A Quality Prediction Hybrid Model of Manufacturing Process B...
收藏 引用
11th ieee data driven control and learning systems conference, ddcls 2022
作者: Peng, Chong Cheng, Zhijian Ren, Hongru Lu, Renquan Guangdong University of Technology School of Computer Science and Technology and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control Guangzhou510006 China Guangdong University of Technology School of Automation and Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control Guangzhou510006 China
the design of manufacturing parameters in the initial stage is backed by quality prediction to realise intelligent manufacturing. Accurate prediction translates to better quality, lower costs and more flexibility. How... 详细信息
来源: 评论
Fault Classification using Deep learning in a Grid-Connected Photovoltaic systems*  8
Fault Classification using Deep Learning in a Grid-Connected...
收藏 引用
8th International conference on control, Decision and Information Technologies (CoDIT)
作者: Hichri, Amal Mansouri, Majdi Hajji, Mansour Bouzrara, Kais Nounou, Hazem Nounou, Mohamed Natl Engn Sch Monastir Res Lab Automat Signal Proc & Image Monastir 5019 Tunisia Texas A&M Univ Qatar Dept Elect & Comp Engn Program Doha 23874 Qatar Prince Sultan Univ Dept Math & Sci Riyadh 11586 Saudi Arabia Texas A&M Univ Qatar Dept Chem Engn Program Doha 23874 Qatar
PV systems are prone to failure owing to aging and external/environmental factors. these failures can affect a range of system components, such as PV modules, connecting lines, and converters/inverters, resulting in d... 详细信息
来源: 评论
A Fusion Optimization Method Based on Observation Tracking and Extremum Seeking for Photovoltaic System
A Fusion Optimization Method Based on Observation Tracking a...
收藏 引用
data driven control and learning systems (ddcls)
作者: Yutao Cheng Tianzhen Wang Tianhao Tang François Auger Shanghai Maritime University Logistics Engineering College Shanghai China Nantes university Saint Nazaire France
Maximum power tracking control is indispensable for Photovoltaic system to gain higher output power. For nonlinear system as photovoltaic system, extremum seeking control algorithm can reach good control effect. In vi... 详细信息
来源: 评论
Blynk-Powered IoT System with Machine learning for Personalized Plant Care  8
Blynk-Powered IoT System with Machine Learning for Personali...
收藏 引用
8th International conference on Inventive systems and control, ICISC 202
作者: Pappula, Madhavi Myneni, Jaswanth Chowdary Gandra, Manasa Tadigadapa, Raghavendra Akella, Bala Krishna Murthy Lakireddy Balireddy College of Engineering AI&DS AP Mylavaram India
this research explores the development of a prototype Internet of things (IoT)-enabled smart irrigation system and investigates its potential integration with machine learning (ML). the primary mechanism, constructed ... 详细信息
来源: 评论
A data-driven Fuzzy Modelling Framework for the Classification of Imbalanced data  8
A Data-driven Fuzzy Modelling Framework for the Classificati...
收藏 引用
8th ieee International conference on Intelligent systems (IS)
作者: Rubio-Solis, Adrian Panoutsos, George thornton, Steve Univ Sheffield Automat Control & Syst Engn Sheffield S10 2TN S Yorkshire England
the design and implementation of data-driven Fuzzy Models (DDFMs) to learn balanced industrial/manufacturing data has demonstrated to be a popular machine learning methodology. However, DDFMs have also proven to perfo... 详细信息
来源: 评论
BBR-FIT: An Intelligent BBR based on the Reinforcement learning to Boost the Network Efficiency over Time-Varying Networks  24
BBR-FIT: An Intelligent BBR based on the Reinforcement Learn...
收藏 引用
24th ieee International conference on High Performance Computing and Communications, 8th ieee International conference on data Science and systems, 20th ieee International conference on Smart City and 8th ieee International conference on Dependability in Sensor, Cloud and Big data systems and Application, HPCC/DSS/SmartCity/DependSys 2022
作者: Xie, Yi Jiang, Xianliang Jin, Guang Chen, Haiming Ningbo University Ningbo China
Recently, the emerging high-speed and low-latency communication techniques (e.g., 5G and WiFi6) reactivated the popularity of some Internet applications. Most of them simultaneously need the support of high-throughput... 详细信息
来源: 评论