咨询与建议

限定检索结果

文献类型

  • 2,464 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,670 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,257 篇 工学
    • 2,053 篇 计算机科学与技术...
    • 1,059 篇 生物医学工程(可授...
    • 842 篇 软件工程
    • 503 篇 光学工程
    • 263 篇 生物工程
    • 225 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 144 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 77 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 629 篇 理学
    • 327 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 296 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 88 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 contrastive lear...
  • 28 篇 magnetic resonan...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,658 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2671 条 记 录,以下是121-130 订阅
排序:
Input Augmentation with SAM: Boosting medical image Segmentation with Segmentation Foundation Model  26th
Input Augmentation with SAM: Boosting Medical Image Segmenta...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhang, Yizhe Zhou, Tao Wang, Shuo Liang, Peixian Zhang, Yejia Chen, Danny Z. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Fudan Univ Sch Basic Med Sci Digital Med Res Ctr Shanghai 200032 Peoples R China Shanghai Key Lab MICCAI Shanghai 200032 Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
the Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks. SAM was trained using 11 million images with over 1 billion masks and can produce segmen...
来源: 评论
Empirical Analysis of a Segmentation Foundation Model in Prostate Imaging  26th
Empirical Analysis of a Segmentation Foundation Model in Pro...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Kim, Heejong Butoi, Victor Ion Dalca, Adrian V. Sabuncu, Mert R. Weill Cornell Med Dept Radiol New York NY 10065 USA Cornell Univ Sch Elect & Comp Engn Ithaca NY USA Cornell Tech Ithaca NY USA Massachusetts Gen Hosp Martinos Ctr Biomed Imaging Boston MA USA Harvard Med Sch Boston MA USA MIT Comp Sci & Artificial Intelligence Lab Cambridge MA USA
Most state-of-the-art techniques for medical image segmentation rely on deep-learning models. these models, however, are often trained on narrowly-defined tasks in a supervised fashion, which requires expensive labele... 详细信息
来源: 评论
GPT4MIA: Utilizing Generative Pre-trained Transformer (GPT-3) as a Plug-and-Play Transductive Model for medical image Analysis  26th
GPT4MIA: Utilizing Generative Pre-trained Transformer (GPT-3...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhang, Yizhe Chen, Danny Z. Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
In this paper, we propose a novel approach (called GPT4MIA) that utilizes Generative Pre-trained Transformer (GPT) as a plug-and-play transductive inference tool for medical image analysis (MIA). We provide theoretica... 详细信息
来源: 评论
Semantic image Synthesis for Abdominal CT  3rd
Semantic Image Synthesis for Abdominal CT
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zhuang, Yan Hou, Benjamin Mathai, Tejas Sudharshan Mukherjee, Pritam Kim, Boah Summers, Ronald M. NIH Imaging Biomarkers & Comp Aided Diag Lab Dept Radiol & Imaging Sci Ctr Clin Bethesda MD 20892 USA
As a new emerging and promising type of generative models, diffusion models have proven to outperform Generative Adversarial Networks (GANs) in multiple tasks, including image synthesis. In this work, we explore seman... 详细信息
来源: 评论
4th international Workshop on Imaging and Treatment Challenges, SWITCH 2024, and 6th international Challenge on Ischemic Stroke Lesion Segmentation Challenge, ISLES 2024, Held in Conjunction with medical image computing and computer assisted intervention, MICCAI 2024
4th International Workshop on Imaging and Treatment Challeng...
收藏 引用
4th international Workshop on Imaging and Treatment Challenges, SWITCH 2024, and 6th international Challenge on Ischemic Stroke Lesion Segmentation Challenge, ISLES 2024, Held in Conjunction with medical image computing and computer assisted intervention, MICCAI 2024
the proceedings contain 12 papers. the special focus in this conference is on Imaging and Treatment Challenges and international Challenge on Ischemic Stroke Lesion Segmentation Challenge, Held in Conjunction with Med...
来源: 评论
AViT: Adapting Vision Transformers for Small Skin Lesion Segmentation Datasets  26th
AViT: Adapting Vision Transformers for Small Skin Lesion Seg...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Du, Siyi Bayasi, Nourhan Hamarneh, Ghassan Garbi, Rafeef Univ British Columbia Vancouver BC Canada Simon Fraser Univ Burnaby BC Canada
Skin lesion segmentation (SLS) plays an important role in skin lesion analysis. Vision transformers (ViTs) are considered an auspicious solution for SLS, but they require more training data compared to convolutional n... 详细信息
来源: 评论
Federated Model Aggregation via Self-supervised Priors for Highly Imbalanced medical image Classification  26th
Federated Model Aggregation via Self-supervised Priors for H...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Elbatel, Marawan Wang, Hualiang Mart, Robert Fu, Huazhu Li, Xiaomeng Hong Kong Univ Sci & Technol Hong Kong Peoples R China Univ Girona Comp Vis & Robot Inst Girona Spain ASTAR Inst High Performance Comp IHPC Singapore Singapore
In the medical field, federated learning commonly deals with highly imbalanced datasets, including skin lesions and gastrointestinal images. Existing federated methods under highly imbalanced datasets primarily focus ...
来源: 评论
Fed-CoT: Co-teachers for Federated Semi-supervised MS Lesion Segmentation  26th
Fed-CoT: Co-teachers for Federated Semi-supervised MS Lesion...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Zhan, Geng Deng, Jiajun Cabezas, Mariano Ouyang, Wanli Barnett, Michael Wang, Chenyu Sydney Neuroimaging Anal Ctr Sydney Australia Univ Sydney Sydney Australia Shanghai Artificial Intelligence Lab Shanghai Peoples R China
Federated learning (FL) is an emerging technique for obtaining a global model while ensuring the data privacy of each client, which is particularly significant in protecting the patients' privacy when conducting m... 详细信息
来源: 评论
Segmentation Style Discovery: Application to Skin Lesion images  9th
Segmentation Style Discovery: Application to Skin Lesion Ima...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Abhishek, Kumar Kawahara, Jeremy Hamarneh, Ghassan Simon Fraser Univ Sch Comp Sci Burnaby BC Canada AIP Labs Budapest Hungary
Variability in medical image segmentation, arising from annotator preferences, expertise, and their choice of tools, has been well documented. While the majority of multi-annotator segmentation approaches focus on mod... 详细信息
来源: 评论
Diffusion Transformer U-Net for medical image Segmentation  26th
Diffusion Transformer U-Net for Medical Image Segmentation
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chowdary, G. Jignesh Yin, Zhaozheng SUNY Stony Brook Stony Brook NY 11794 USA
Diffusion model has shown its power on various generation tasks. When applying the diffusion model in medical image segmentation, there are a few roadblocks to remove: the semantic features required for the conditioni... 详细信息
来源: 评论