咨询与建议

限定检索结果

文献类型

  • 2,464 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,670 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,257 篇 工学
    • 2,053 篇 计算机科学与技术...
    • 1,059 篇 生物医学工程(可授...
    • 842 篇 软件工程
    • 503 篇 光学工程
    • 263 篇 生物工程
    • 225 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 144 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 77 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 629 篇 理学
    • 327 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 296 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 88 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 contrastive lear...
  • 28 篇 magnetic resonan...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,658 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2671 条 记 录,以下是141-150 订阅
排序:
the Role of Subgroup Separability in Group-Fair medical image Classification  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Jones, Charles Roschewitz, Melanie Glocker, Ben Imperial Coll London Dept Comp London England
We investigate performance disparities in deep classifiers. We find that the ability of classifiers to separate individuals into subgroups varies substantially across medical imaging modalities and protected character... 详细信息
来源: 评论
Evaluation and Improvement of Segment Anything Model for Interactive Histopathology image Segmentation  26th
Evaluation and Improvement of Segment Anything Model for Int...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI) / 8th ISIC Workshop / 1st Care-AI Workshop / 1st MedAGI Workshop / 4th DeCaF Workshop
作者: Kim, SeungKyu Oh, Hyun-Jic Min, Seonghui Jeong, Won-Ki Korea Univ Dept Comp Sci & Engn Coll Informat Seoul South Korea
With the emergence of the Segment Anything Model (SAM) as a foundational model for image segmentation, its application has been extensively studied across various domains, including the medical field. However, its pot... 详细信息
来源: 评论
5th Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging, MSKI 2017 Held in Conjunction with 20th international conference on medical image computing and computer-assisted intervention, MICCAI 2017
5th Workshop on Computational Methods and Clinical Applicati...
收藏 引用
5th Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging, MSKI 2017 Held in Conjunction with 20th international conference on medical image computing and computer-assisted intervention, MICCAI 2017
the proceedings contain 13 papers. the special focus in this conference is on Computational Methods and Clinical Applications in Musculoskeletal Imaging. the topics include: Automatic full femur segmentation from comp...
来源: 评论
ViT-DAE: Transformer-Driven Diffusion Autoencoder for Histopathology image Analysis  3rd
ViT-DAE: Transformer-Driven Diffusion Autoencoder for Histop...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xu, Xuan Kapse, Saarthak Gupta, Rajarsi Prasanna, Prateek SUNY Stony Brook New York NY 11794 USA
Generative AI has received substantial attention in recent years due to its ability to synthesize data that closely resembles the original data source. While Generative Adversarial Networks (GANs) have provided innova... 详细信息
来源: 评论
Operating Critical Machine Learning Models in Resource Constrained Regimes  26th
Operating Critical Machine Learning Models in Resource Const...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Selvan, Raghavendra Schon, Julian Dam, Erik B. Univ Copenhagen Dept Comp Sci Copenhagen Denmark Univ Copenhagen Dept Neurosci Copenhagen Denmark
the accelerated development of machine learning methods, primarily deep learning, are causal to the recent breakthroughs in medical image analysis and computer aided intervention. the resource consumption of deep lear... 详细信息
来源: 评论
9th international Workshop on Machine Learning in medical Imaging, MLMI 2018 held in conjunction with the 21st international conference on medical image computing and computer-assisted intervention, MICCAI 2018
9th International Workshop on Machine Learning in Medical Im...
收藏 引用
9th international Workshop on Machine Learning in medical Imaging, MLMI 2018 held in conjunction with the 21st international conference on medical image computing and computer-assisted intervention, MICCAI 2018
the proceedings contain 46 papers. the special focus in this conference is on Machine Learning in medical Imaging. the topics include: Synthesizing dynamic MRI using long-term recurrent convolutional networks;Automati...
来源: 评论
Towards Generalised Neural Implicit Representations for image Registration  3rd
Towards Generalised Neural Implicit Representations for Imag...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zimmer, Veronika A. Hammernik, Kerstin Sideri-Lampretsa, Vasiliki Huang, Wenqi Reithmeir, Anna Rueckert, Daniel Schnabel, Julia A. Tech Univ Munich Sch Computat Informat & Technol Munich Germany Helmholtz Munich Munich Germany Tech Univ Munich Sch Med Klinikum Rechts Isar Munich Germany Munich Ctr Machine Learning MCML Munich Germany Imperial Coll London Dept Comp London England Kings Coll London London England
Neural implicit representations (NIRs) enable to generate and parametrize the transformation for image registration in a continuous way. By design, these representations are image-pair-specific, meaning that for each ... 详细信息
来源: 评论
DAST: Differentiable Architecture Search with Transformer for 3D medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Yang, Dong Xu, Ziyue He, Yufan Nath, Vishwesh Li, Wenqi Myronenko, Andriy Hatamizadeh, Ali Zhao, Can Roth, Holger R. Xu, Daguang NVIDIA Santa Clara CA 95051 USA
Neural Architecture Search (NAS) has been widely used for medical image segmentation by improving both model performance and computational efficiency. Recently, the Visual Transformer (ViT) model has achieved signific... 详细信息
来源: 评论
Robust T-Loss for medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Gonzalez-Jimenez, Alvaro Lionetti, Simone Gottfrois, Philippe Groeger, Fabian Pouly, Marc Navarini, Alexander A. Univ Basel Basel Switzerland Lucerne Sch Comp Sci & Informat Technol Rotkreuz Switzerland
this paper presents a new robust loss function, the T-Loss, for medical image segmentation. the proposed loss is based on the negative log-likelihood of the Student-t distribution and can effectively handle outliers i... 详细信息
来源: 评论
Boundary Difference over Union Loss for medical image Segmentation  26th
Boundary Difference over Union Loss for Medical Image Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Sun, Fan Luo, Zhiming Li, Shaozi Xiamen Univ Dept Artificial Intelligence Xiamen Fujian Peoples R China
medical image segmentation is crucial for clinical diagnosis. However, current losses for medical image segmentation mainly focus on overall segmentation results, with fewer losses proposed to guide boundary segmentat... 详细信息
来源: 评论