咨询与建议

限定检索结果

文献类型

  • 2,464 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,670 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,257 篇 工学
    • 2,053 篇 计算机科学与技术...
    • 1,059 篇 生物医学工程(可授...
    • 842 篇 软件工程
    • 503 篇 光学工程
    • 263 篇 生物工程
    • 225 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 144 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 77 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 629 篇 理学
    • 327 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 296 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 88 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 contrastive lear...
  • 28 篇 magnetic resonan...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,658 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2671 条 记 录,以下是151-160 订阅
排序:
RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor Detection  26th
RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kang, Ming Ting, Chee-Ming Ting, Fung Fung Phan, Raphael C. -W. Monash Univ Sch Informat Technol Malaysia Campus Subang Jaya Malaysia
With an excellent balance between speed and accuracy, cutting-edge YOLO frameworks have become one of the most efficient algorithms for object detection. However, the performance of using YOLO networks is scarcely inv... 详细信息
来源: 评论
CXR-CLIP: Toward Large Scale Chest X-ray Language-image Pre-training  26th
CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: You, Kihyun Gu, Jawook Ham, Jiyeon Park, Beomhee Kim, Jiho Hong, Eun K. Baek, Woonhyuk Roh, Byungseok Kakaobrain Seongnam South Korea
A large-scale image-text pair dataset has greatly contributed to the development of vision-language pre-training (VLP) models, which enable zero-shot or few-shot classification without costly annotation. However, in t... 详细信息
来源: 评论
Metrics to Quantify Global Consistency in Synthetic medical images  3rd
Metrics to Quantify Global Consistency in Synthetic Medical ...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Scholz, Daniel Wiestler, Benedikt Rueckert, Daniel Menten, Martin J. Tech Univ Munich Lab AI Med Munich Germany Tech Univ Munich Klinikum Rechts Isar Dept Neuroradiol Munich Germany Imperial Coll London Dept Comp BioMedIA London England
image synthesis is increasingly being adopted in medical image processing, for example for data augmentation or inter-modality image translation. In these critical applications, the generated images must fulfill a hig... 详细信息
来源: 评论
PMC-CLIP: Contrastive Language-image Pre-training Using Biomedical Documents  26th
PMC-CLIP: Contrastive Language-Image Pre-training Using Biom...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Weixiong Zhao, Ziheng Zhang, Xiaoman Wu, Chaoyi Zhang, Ya Wang, Yanfeng Xie, Weidi Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China
Foundation models trained on large-scale dataset gain a recent surge in CV and NLP. In contrast, development in biomedical domain lags far behind due to data scarcity. To address this issue, we build and release PMC-O... 详细信息
来源: 评论
Probing the Efficacy of Federated Parameter-Efficient Fine-Tuning of Vision Transformers for medical image Classification  9th
Probing the Efficacy of Federated Parameter-Efficient Fine-T...
收藏 引用
27th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Alkhunaizi, Naif Almalik, Faris Al-Refai, Rouqaiah Naseer, Muzammal Nandakumar, Karthik Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates
With the advent of large pre-trained transformer models, fine-tuning these models for various downstream tasks is a critical problem. Paucity of training data, the existence of data silos, and stringent privacy constr... 详细信息
来源: 评论
Anti-adversarial Consistency Regularization for Data Augmentation: Applications to Robust medical image Segmentation  26th
Anti-adversarial Consistency Regularization for Data Augment...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cho, Hyuna Han, Yubin Kim, Won Hwa Pohang Univ Sci & Technol POSTECH Pohang South Korea
Modern deep learning methods for semantic segmentation require labor-intensive labeling for large-scale datasets with dense pixel-level annotations. Recent data augmentation methods such as dropping, mixing image patc... 详细信息
来源: 评论
Hessian-Based Similarity Metric for Multimodal medical image Registration  26th
Hessian-Based Similarity Metric for Multimodal Medical Image...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Eskandari, Mohammadreza Gueziri, Houssem-Eddine Collins, D. Louis McGill Univ Dept Biomed Engn Montreal PQ Canada Montreal Neurol Hosp & Inst McConnell Brain Imaging Ctr Montreal PQ Canada McGill Univ Dept Neurol & Neurosurg Montreal PQ Canada
One of the fundamental elements of both traditional and certain deep learning medical image registration algorithms is measuring the similarity/dissimilarity between two images. In this work, we propose an analytical ... 详细信息
来源: 评论
Conditional Diffusion Models for Weakly Supervised medical image Segmentation  26th
Conditional Diffusion Models for Weakly Supervised Medical I...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Hu, Xinrong Chen, Yu-Jen Ho, Tsung-Yi Shi, Yiyu Univ Notre Dame Notre Dame IN 46556 USA Natl Tsing Hua Univ Hsinchu Taiwan Chinese Univ Hong Kong Shatin Hong Kong Peoples R China
Recent advances in denoising diffusion probabilistic models have shown great success in image synthesis tasks. While there are already works exploring the potential of this powerful tool in image semantic segmentation... 详细信息
来源: 评论
Semi-supervised Domain Adaptive medical image Segmentation through Consistency Regularized Disentangled Contrastive Learning  26th
Semi-supervised Domain Adaptive Medical Image Segmentation T...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Basak, Hritam Yin, Zhaozheng SUNY Stony Brook Dept Comp Sci Stony Brook NY 11794 USA
Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised... 详细信息
来源: 评论
A2FSeg: Adaptive Multi-modal Fusion Network for medical image Segmentation  26th
A2FSeg: Adaptive Multi-modal Fusion Network for Medical Imag...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Zirui Hong, Yi Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China
Magnetic Resonance Imaging (MRI) plays an important role in multi-modal brain tumor segmentation. However, missing modality is very common in clinical diagnosis, which will lead to severe segmentation performance degr... 详细信息
来源: 评论