咨询与建议

限定检索结果

文献类型

  • 2,464 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,670 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,257 篇 工学
    • 2,053 篇 计算机科学与技术...
    • 1,059 篇 生物医学工程(可授...
    • 842 篇 软件工程
    • 503 篇 光学工程
    • 263 篇 生物工程
    • 225 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 144 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 77 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 629 篇 理学
    • 327 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 296 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 88 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 contrastive lear...
  • 28 篇 magnetic resonan...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,658 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2671 条 记 录,以下是171-180 订阅
排序:
Dense Transformer based Enhanced Coding Network for Unsupervised Metal Artifact Reduction  26th
Dense Transformer based Enhanced Coding Network for Unsuperv...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Xie, Wangduo Blaschko, Matthew B. Katholieke Univ Leuven Dept ESAT Ctr Proc Speech & Images Leuven Belgium
CT images corrupted by metal artifacts have serious negative effects on clinical diagnosis. Considering the difficulty of collecting paired data with ground truth in clinical settings, unsupervised methods for metal a... 详细信息
来源: 评论
MedNeXt: Transformer-Driven Scaling of ConvNets for medical image Segmentation  26th
MedNeXt: Transformer-Driven Scaling of ConvNets for Medical ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Roy, Saikat Koehler, Gregor Ulrich, Constantin Baumgartner, Michael Petersen, Jens Isensee, Fabian Jaeger, Paul F. Maier-Hein, Klaus H. German Canc Res Ctr Div Med Image Comp MIC Heidelberg Germany Heidelberg Univ Hosp Dept Radiat Oncol Pattern Anal & Learning Grp Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany German Canc Res Ctr Helmholtz Imaging Heidelberg Germany NCT Heidelberg Natl Ctr Tumor Dis NCT Heidelberg Germany German Canc Res Ctr Interact Machine Learning Grp Heidelberg Germany
there has been exploding interest in embracing Transformer-based architectures for medical image segmentation. However, the lack of large-scale annotated medical datasets make achieving performances equivalent to thos... 详细信息
来源: 评论
Learning Transferable Object-Centric Diffeomorphic Transformations for Data Augmentation in medical image Segmentation  26th
Learning Transferable Object-Centric Diffeomorphic Transform...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kumar, Nilesh Gyawali, Prashnna K. Ghimire, Sandesh Wang, Linwei Rochester Inst Technol Rochester NY 14623 USA West Virginia Univ Morgantown WV 26506 USA Qualcomm Inc San Diego CA USA
Obtaining labelled data in medical image segmentation is challenging due to the need for pixel-level annotations by experts. Recent works have shown that augmenting the object of interest with deformable transformatio... 详细信息
来源: 评论
Text-Guided Cross-Position Attention for Segmentation: Case of medical image  26th
Text-Guided Cross-Position Attention for Segmentation: Case ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lee, Go-Eun Kim, Seon Ho Cho, Jungchan Choi, Sang Tae Choi, Sang-Il Dankook Univ Yongin Gyeonggi Do South Korea Univ Southern Calif Los Angeles CA 90007 USA Gachon Univ Seongnam Gyeonggi Do South Korea Chung Ang Univ Coll Med Seoul South Korea
We propose a novel text-guided cross-position attention module which aims at applying a multi-modality of text and image to position attention in medical image segmentation. To match the dimension of the text feature ... 详细信息
来源: 评论
Pre-trained Diffusion Models for Plug-and-Play medical image Enhancement  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ma, Jun Zhu, Yuanzhi You, Chenyu Wang, Bo Univ Hlth Network Peter Munk Cardiac Ctr Toronto ON Canada Univ Toronto Dept Lab Med & Pathobiol Toronto ON Canada Vector Inst Artificial Intelligence Toronto ON Canada Swiss Fed Inst Technol Dept Informat Technol & Elect Engn Zurich Switzerland Yale Univ Dept Elect Engn New Haven CT USA Univ Toronto Dept Comp Sci Toronto ON Canada Univ Hlth Network AI Hub Toronto ON Canada
Deep learning-based medical image enhancement methods (e.g., denoising and super-resolution) mainly rely on paired data and correspondingly the well-trained models can only handle one type of task. In this paper, we a... 详细信息
来源: 评论
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmentation with Annotation-Efficient Supervision  26th
M-GenSeg: Domain Adaptation for Target Modality Tumor Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Alefsen, Malo Vorontsov, Eugene Kadoury, Samuel Ecole Polytech Montreal Montreal PQ Canada CHUM Ctr Rech Montreal PQ Canada Paige Montreal PQ Canada
Automated medical image segmentation using deep neural networks typically requires substantial supervised training. However, these models fail to generalize well across different imaging modalities. this shortcoming, ... 详细信息
来源: 评论
MDViT: Multi-domain Vision Transformer for Small medical image Segmentation Datasets  26th
MDViT: Multi-domain Vision Transformer for Small Medical Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Du, Siyi Bayasi, Nourhan Hamarneh, Ghassan Garbi, Rafeef Univ British Columbia Vancouver BC Canada Simon Fraser Univ Burnaby BC Canada
Despite its clinical utility, medical image segmentation (MIS) remains a daunting task due to images' inherent complexity and variability. Vision transformers (ViTs) have recently emerged as a promising solution t... 详细信息
来源: 评论
Co-learning Semantic-Aware Unsupervised Segmentation for Pathological image Registration  26th
Co-learning Semantic-Aware Unsupervised Segmentation for Pat...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liu, Yang Gu, Shi Univ Elect Sci & Technol China Chengdu Peoples R China
the registration of pathological images plays an important role in medical applications. Despite its significance, most researchers in this field primarily focus on the registration of normal tissue into normal tissue... 详细信息
来源: 评论
Certification of Deep Learning Models for medical image Segmentation  26th
Certification of Deep Learning Models for Medical Image Segm...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Laousy, Othmane Araujo, Alexandre Chassagnon, Guillaume Paragios, Nikos Revel, Marie-Pierre Vakalopoulou, Maria Univ Paris Saclay Cent Supelec MICS Gif Sur Yvette France Paris Cite Univ Hop Cochin AP HP Paris France Inria Saclay Gif Sur Yvette France NYU New York NY USA Therapanacea Paris France
In medical imaging, segmentation models have known a significant improvement in the past decade and are now used daily in clinical practice. However, similar to classification models, segmentation models are affected ... 详细信息
来源: 评论
HartleyMHA: Self-attention in Frequency Domain for Resolution-Robust and Parameter-Efficient 3D image Segmentation  26th
HartleyMHA: Self-attention in Frequency Domain for Resolutio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wong, Ken C. L. Wang, Hongzhi Syeda-Mahmood, Tanveer IBM Res Almaden Res Ctr San Jose CA 95120 USA
With the introduction of Transformers, different attention-based models have been proposed for image segmentation with promising results. Although self-attention allows capturing of long-range dependencies, it suffers... 详细信息
来源: 评论