咨询与建议

限定检索结果

文献类型

  • 2,464 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,670 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,257 篇 工学
    • 2,053 篇 计算机科学与技术...
    • 1,059 篇 生物医学工程(可授...
    • 842 篇 软件工程
    • 503 篇 光学工程
    • 263 篇 生物工程
    • 225 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 144 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 77 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 629 篇 理学
    • 327 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 296 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 88 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 contrastive lear...
  • 28 篇 magnetic resonan...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,658 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2671 条 记 录,以下是191-200 订阅
排序:
Transformer-Based Annotation Bias-Aware medical image Segmentation  26th
Transformer-Based Annotation Bias-Aware Medical Image Segmen...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Liao, Zehui Hu, Shishuai Xie, Yutong Xia, Yong Northwestern Polytech Univ Sch Comp Sci & Engn Natl Engn Lab Integrated Aerospace Ground Ocean B Xian 710072 Peoples R China Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia
Manual medical image segmentation is subjective and suffers from annotator-related bias, which can be mimicked or amplified by deep learning methods. Recently, researchers have suggested that such bias is the combinat... 详细信息
来源: 评论
Self-adaptive Adversarial Training for Robust medical Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Fu Fu, Zeyu Zhang, Yanghao Ruan, Wenjie Univ Exeter Exeter EX4 4QF Devon England Univ Liverpool Liverpool L69 3BX Merseyside England
Adversarial training has been demonstrated to be one of the most effective approaches to training deep neural networks that are robust to malicious perturbations. Research on effectively applying it to produce robust ... 详细信息
来源: 评论
Text-Guided Foundation Model Adaptation for Pathological image Classification  26th
Text-Guided Foundation Model Adaptation for Pathological Ima...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yunkun Gao, Jin Zhou, Mu Wang, Xiaosong Qiao, Yu Zhang, Shaoting Wang, Dequan Shanghai Jiao Tong Univ Shanghai Peoples R China Rutgers State Univ Newark NJ USA Shanghai AI Lab Shanghai Peoples R China
the recent surge of foundation models in computer vision and natural language processing opens up perspectives in utilizing multi-modal clinical data to train large models with strong generalizability. Yet pathologica... 详细信息
来源: 评论
Multi-scale Prototypical Transformer forWhole Slide image Classification  26th
Multi-scale Prototypical Transformer forWhole Slide Image Cl...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ding, Saisai Wang, Jun Li, Juncheng Shi, Jun Shanghai Univ Sch Commun & Informat Engn Shanghai Peoples R China
Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains c... 详细信息
来源: 评论
NASDM: Nuclei-Aware Semantic Histopathology image Generation Using Diffusion Models  26th
NASDM: Nuclei-Aware Semantic Histopathology Image Generation...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Shrivastava, Aman Fletcher, P. thomas Univ Virginia Charlottesville VA 22903 USA
In recent years, computational pathology has seen tremendous progress driven by deep learning methods in segmentation and classification tasks aiding prognostic and diagnostic settings. Nuclei segmentation, for instan... 详细信息
来源: 评论
UPCoL: Uncertainty-Informed Prototype Consistency Learning for Semi-supervised medical image Segmentation  26th
UPCoL: Uncertainty-Informed Prototype Consistency Learning f...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lu, Wenjing Lei, Jiahao Qiu, Peng Sheng, Rui Zhou, Jinhua Lu, Xinwu Yang, Yang Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China Shanghai Jiao Tong Univ Dept Vasc Surg Shanghai Peoples Hosp 9 Shanghai Peoples R China Anhui Med Univ Chaohu Clin Medcial Coll Hefei Peoples R China Anhui Med Univ Sch Biomed Engn Hefei Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples Hosp 9 Shanghai Key Lab Tissue Engn Sch Med Shanghai Peoples R China
Semi-supervised learning (SSL) has emerged as a promising approach for medical image segmentation, while its capacity has still been limited by the difficulty in quantifying the reliability of unlabeled data and the l... 详细信息
来源: 评论
Importance of Aligning Training Strategy with Evaluation for Diffusion Models in 3D Multiclass Segmentation  3rd
Importance of Aligning Training Strategy with Evaluation for...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Fu, Yunguan Li, Yiwen Saeed, Shaheer U. Clarkson, Matthew J. Hu, Yipeng UCL London England InstaDeep London England Univ Oxford Oxford England
Recently, denoising diffusion probabilistic models (DDPM) have been applied to image segmentation by generating segmentation masks conditioned on images, while the applications were mainly limited to 2D networks witho... 详细信息
来源: 评论
X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Deep Structure Prior  26th
X2Vision: 3D CT Reconstruction from Biplanar X-Rays with Dee...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cafaro, Alexandre Spinat, Quentin Leroy, Amaury Maury, Pauline Munoz, Alexandre Beldjoudi, Guillaume Robert, Charlotte Deutsch, Eric Gregoire, Vincent Lepetit, Vincent Paragios, Nikos TheraPanacea Paris France Paris Saclay Univ Gustave Roussy Inserm 1030 Villejuif France Ctr Leon Berard Dept Radiat Oncol Lyon France Univ Gustave Eiffel CNRS LIGM Ecole Ponts Paris France
We propose an unsupervised deep learning method to reconstruct a 3D tomographic image from biplanar X-rays, to reduce the number of required projections, the patient dose, and the acquisition time. To address this ill... 详细信息
来源: 评论
Differentiable Beamforming for Ultrasound Autofocusing  26th
Differentiable Beamforming for Ultrasound Autofocusing
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Simson, Walter Zhuang, Louise Sanabria, Sergio J. Antil, Neha Dahl, Jeremy J. Hyun, Dongwoon Stanford Univ Stanford CA 94305 USA
Ultrasound images are distorted by phase aberration arising from local sound speed variations in the tissue, which lead to inaccurate time delays in beamforming and loss of image focus. Whereas state-of-the-art correc... 详细信息
来源: 评论
Interpretable medical image Classification Using Prototype Learning and Privileged Information  26th
Interpretable Medical Image Classification Using Prototype L...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Gallee, Luisa Beer, Meinrad Goetz, Michael Univ Hosp Ulm Expt Radiol Ulm Germany Univ Hosp Ulm Dept Diagnost & Intervent Radiol Ulm Germany Univ Hosp Ulm i2SouI Innovat Imaging Surg Oncol Ulm Ulm Germany
Interpretability is often an essential requirement in medical imaging. Advanced deep learning methods are required to address this need for explainability and high performance. In this work, we investigate whether add... 详细信息
来源: 评论