咨询与建议

限定检索结果

文献类型

  • 2,486 篇 会议
  • 123 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,693 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,277 篇 工学
    • 2,072 篇 计算机科学与技术...
    • 1,061 篇 生物医学工程(可授...
    • 847 篇 软件工程
    • 506 篇 光学工程
    • 263 篇 生物工程
    • 238 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 157 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 643 篇 理学
    • 341 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 302 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 91 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 55 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 34 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,670 篇 英文
  • 19 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2694 条 记 录,以下是231-240 订阅
排序:
Learning Expected Appearances for Intraoperative Registration During Neurosurgery  26th
Learning Expected Appearances for Intraoperative Registratio...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Haouchine, Nazim Dorent, Reuben Juvekar, Parikshit Torio, Erickson Wells, William M., III Kapur, Tina Golby, Alexandra J. Frisken, Sarah Harvard Med Sch Brigham & Womens Hosp Boston MA 02115 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical micros... 详细信息
来源: 评论
Treasure in Distribution: A Domain Randomization Based Multi-source Domain Generalization for 2D medical image Segmentation  26th
Treasure in Distribution: A Domain Randomization Based Multi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Ziyang Pan, Yongsheng Ye, Yiwen Cui, Hengfei Xia, Yong Northwestern Polytech Univ Sch Comp Sci & Engn Natl Engn Lab Integrated Aerosp Ground Ocean Big Xian 710072 Peoples R China ShanghaiTech Univ Sch Biomed Engn Shanghai 201210 Peoples R China
Although recent years have witnessed the great success of convolutional neural networks (CNNs) in medical image segmentation, the domain shift issue caused by the highly variable image quality of medical images hinder... 详细信息
来源: 评论
Investigating Data Memorization in 3D Latent Diffusion Models for medical image Synthesis  3rd
Investigating Data Memorization in 3D Latent Diffusion Model...
收藏 引用
3rd Workshop on Deep Generative Models for medical image computing and computer assisted intervention (DGM4MICCAI) at the 26th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Dar, Salman Ul Hassan Ghanaat, Arman Kahmann, Jannik Ayx, Isabelle Papavassiliu, theano Schoenberg, Stefan O. Engelhardt, Sandy Heidelberg Univ Hosp Dept Internal Med 3 Grp Artificial Intelligence CardiovascularMed D-69120 Heidelberg Germany AI Hlth Innovat Cluster Heidelberg Germany German Ctr Cardiovasc Res DZHK Partner Site Heidelberg Mannheim Heidelberg Germany Heidelberg Univ Univ Med Ctr Mannheim Dept Radiol & Nucl Med Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany Univ Med Ctr Mannheim Dept Med Cardiol 1 Theodor Kutzer Ufer 1-3 D-68167 Mannheim Germany
Generative latent diffusion models have been established as state-of-the-art in data generation. One promising application is generation of realistic synthetic medical imaging data for open data sharing without compro... 详细信息
来源: 评论
Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping  26th
Mitosis Detection from Partial Annotation by Dataset Generat...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Nishimura, Kazuya Katanaya, Ami Chuma, Shinichiro Bise, Ryoma Kyushu Univ Fukuoka Japan Kyoto Univ Kyoto Japan
Detection of mitosis events plays an important role in biomedical research. Deep-learning-based mitosis detection methods have achieved outstanding performance with a certain amount of labeled data. However, these met... 详细信息
来源: 评论
MRIS: A Multi-modal Retrieval Approach for image Synthesis on Diverse Modalities  26th
MRIS: A Multi-modal Retrieval Approach for Image Synthesis o...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Boqi Niethammer, Marc Univ N Carolina Dept Comp Sci Chapel Hill NC 27599 USA
Multiple imaging modalities are often used for disease diagnosis, prediction, or population-based analyses. However, not all modalities might be available due to cost, different study designs, or changes in imaging te... 详细信息
来源: 评论
DHC: Dual-Debiased Heterogeneous Co-training Framework for Class-Imbalanced Semi-supervised medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Haonan Li, Xiaomeng Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China
the volume-wise labeling of 3D medical images is expertise-demanded and time-consuming;hence semi-supervised learning (SSL) is highly desirable for training with limited labeled data. Imbalanced class distribution is ... 详细信息
来源: 评论
MetaLR: Meta-tuning of Learning Rates for Transfer Learning in medical Imaging  26th
MetaLR: Meta-tuning of Learning Rates for Transfer Learning ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Yixiong Liu, Li Li, Jingxian Jiang, Hua Ding, Chris Zhou, Zongwei Chinese Univ Hong Kong Shenzhen Peoples R China Shenzhen Res Inst Big Data Shenzhen Peoples R China Hong Kong Univ Sci & Technol Guangzhou Guangzhou Peoples R China Fudan Univ Software Sch Shanghai Peoples R China Johns Hopkins Univ Baltimore MD USA
In medical image analysis, transfer learning is a powerful method for deep neural networks (DNNs) to generalize on limited medical data. Prior efforts have focused on developing pre-training algorithms on domains such... 详细信息
来源: 评论
Additional Positive Enables Better Representation Learning for medical images  26th
Additional Positive Enables Better Representation Learning f...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zeng, Dewen Wu, Yawen Hu, Xinrong Xu, Xiaowei Hu, Jingtong Shi, Yiyu Univ Notre Dame Notre Dame IN 46556 USA Univ Pittsburgh Pittsburgh PA USA Guangdong Prov Peoples Hosp Guangzhou Peoples R China
this paper presents a new way to identify additional positive pairs for BYOL, a state-of-the-art (SOTA) self-supervised learning framework, to improve its representation learning ability. Unlike conventional BYOL whic... 详细信息
来源: 评论
ConvFormer: Plug-and-Play CNN-Style Transformers for Improving medical image Segmentation  26th
ConvFormer: Plug-and-Play CNN-Style Transformers for Improvi...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lin, Xian Yan, Zengqiang Deng, Xianbo Zheng, Chuansheng Yu, Li Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan Peoples R China Huazhong Univ Sci & Technol Union Hosp Dept Radiol Tongji Med Coll Wuhan Peoples R China
Transformers have been extensively studied in medical image segmentation to build pairwise long-range dependence. Yet, relatively limited well-annotated medical image data makes transformers struggle to extract divers... 详细信息
来源: 评论
MultiTalent: A Multi-dataset Approach to medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ulrich, Constantin Isensee, Fabian Wald, Tassilo Zenk, Maximilian Baumgartner, Michael Maier-Hein, Klaus H. German Canc Res Ctr Div Med Image Comp Heidelberg Germany DKFZ Helmholtz Imaging Heidelberg Germany Heidelberg Univ Hosp Dept Radiat Oncol Pattern Anal & Learning Grp Heidelberg Germany NCT Heidelberg Natl Ctr Tumor Dis NCT Heidelberg Germany Heidelberg Univ Med Fac Heidelberg Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany
the medical imaging community generates a wealth of datasets, many of which are openly accessible and annotated for specific diseases and tasks such as multi-organ or lesion segmentation. Current practices continue to... 详细信息
来源: 评论