咨询与建议

限定检索结果

文献类型

  • 2,486 篇 会议
  • 123 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,693 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,277 篇 工学
    • 2,072 篇 计算机科学与技术...
    • 1,061 篇 生物医学工程(可授...
    • 847 篇 软件工程
    • 506 篇 光学工程
    • 263 篇 生物工程
    • 238 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 157 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 643 篇 理学
    • 341 篇 数学
    • 320 篇 生物学
    • 288 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 92 篇 管理学
    • 62 篇 图书情报与档案管...
    • 32 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 302 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 91 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 55 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 34 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,670 篇 英文
  • 19 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2694 条 记 录,以下是291-300 订阅
排序:
Efficient Registration of Longitudinal Studies for Follow-Up Lesion Assessment by Exploiting Redundancy and Composition of Deformations  26th
Efficient Registration of Longitudinal Studies for Follow-Up...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Kuckertz, Sven Heldmann, Stefan Moltz, Jan Hendrik Fraunhofer Inst Digital Med MEVIS Lubeck Germany
Follow-up assessment of lesions for cancer patients is an important part of radiologists' work. image registration is a key technology to facilitate this task, as it allows for the automatic establishment of corre... 详细信息
来源: 评论
Non-iterative Coarse-to-Fine Transformer Networks for Joint Affine and Deformable image Registration  26th
Non-iterative Coarse-to-Fine Transformer Networks for Joint ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Meng, Mingyuan Bi, Lei Fulham, Michael Feng, Dagan Kim, Jinman Univ Sydney Sch Comp Sci Sydney NSW Australia Shanghai Jiao Tong Univ Inst Translat Med Shanghai Peoples R China Royal Prince Alfred Hosp Dept Mol Imaging Sydney NSW Australia Shanghai Jiao Tong Univ Med X Res Inst Shanghai Peoples R China
image registration is a fundamental requirement for medical image analysis. Deep registration methods based on deep learning have been widely recognized for their capabilities to perform fast end-to-end registration. ... 详细信息
来源: 评论
Regularized Kelvinlet Functions to Model Linear Elasticity for image-to-Physical Registration of the Breast  26th
Regularized Kelvinlet Functions to Model Linear Elasticity f...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ringel, Morgan Heiselman, Jon Richey, Winona Meszoely, Ingrid Miga, Michael Vanderbilt Univ Dept Biomed Engn Nashville TN 37235 USA Mem Sloan Kettering Canc Ctr Dept Surg 1275 York Ave New York NY 10021 USA Vanderbilt Univ Div Surg Oncol Med Ctr Nashville TN USA
image-guided surgery requires fast and accurate registration to align preoperative imaging and surgical spaces. the breast undergoes large nonrigid deformations during surgery, compromising the use of imaging data for... 详细信息
来源: 评论
DULDA: Dual-Domain Unsupervised Learned Descent Algorithm for PET image Reconstruction  26th
DULDA: Dual-Domain Unsupervised Learned Descent Algorithm fo...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Hu, Rui Chen, Yunmei Kim, Kyungsang Rockenbach, Marcio Aloisio Bezerra Cavalcanti Li, Quanzheng Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA Harvard Med Sch Massachusetts Gen Hosp Ctr Adv Med Comp & Anal Boston MA 02114 USA Massachusetts Gen Brigham Data Sci Off Boston MA 02116 USA
Deep learning based PET image reconstruction methods have achieved promising results recently. However, most of these methods follow a supervised learning paradigm, which rely heavily on the availability of high-quali... 详细信息
来源: 评论
A Multi-task Method for Immunofixation Electrophoresis image Classification  26th
A Multi-task Method for Immunofixation Electrophoresis Image...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Shi, Yi Li, Rui-Xiang Shao, Wen-Qi Duan, Xin-Cen Ye, Han-Jia Zhan, De-Chuan Pan, Bai-Shen Wang, Bei-Li Guo, Wei Jiang, Yuan Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Fudan Univ Zhongshan Hosp Dept Lab Med Shanghai Peoples R China
In the field of plasma cell disorders diagnosis, the detection of abnormal monoclonal (M) proteins through Immunofixation Electrophoresis (IFE) is a widely accepted practice. However, the classification of IFE images ... 详细信息
来源: 评论
SwinMM: Masked Multi-view with Swin Transformers for 3D medical image Segmentation  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wang, Yiqing Li, Zihan Mei, Jieru Wei, Zihao Liu, Li Wang, Chen Sang, Shengtian Yuille, Alan L. Xie, Cihang Zhou, Yuyin Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Washington Seattle WA USA Johns Hopkins Univ Baltimore MD USA Univ Calif Santa Cruz Santa Cruz CA 95064 USA Tsinghua Univ Beijing Peoples R China Stanford Univ Stanford CA 94305 USA Univ Michigan Ann Arbor MI 48109 USA
Recent advancements in large-scale Vision Transformers have made significant strides in improving pre-trained models for medical image segmentation. However, these methods face a notable challenge in acquiring a subst... 详细信息
来源: 评论
ACC-UNet: A Completely Convolutional UNet Model for the 2020s  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ibtehaz, Nabil Kihara, Daisuke Purdue Univ Dept Comp Sci W Lafayette IN 47907 USA Purdue Univ Dept Biol Sci W Lafayette IN 47907 USA
this decade is marked by the introduction of Vision Transformer, a radical paradigm shift in broad computer vision. A similar trend is followed in medical imaging, UNet, one of the most influential architectures, has ... 详细信息
来源: 评论
A Flexible Framework for Simulating and Evaluating Biases in Deep Learning-Based medical image Analysis  26th
A Flexible Framework for Simulating and Evaluating Biases in...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Stanley, Emma A. M. Wilms, Matthias Forkert, Nils D. Univ Calgary Dept Biomed Engn Calgary AB Canada Univ Calgary Dept Radiol Calgary AB Canada Univ Calgary Hotchkiss Brain Inst Calgary AB Canada Univ Calgary Alberta Childrens Hosp Res Inst Calgary AB Canada Univ Calgary Dept Pediat Calgary AB Canada Univ Calgary Dept Community Hlth Sci Calgary AB Canada Univ Calgary Dept Clin Neurosci Calgary AB Canada
Despite the remarkable advances in deep learning for medical image analysis, it has become evident that biases in datasets used for training such models pose considerable challenges for a clinical deployment, includin... 详细信息
来源: 评论
UniSeg: A Prompt-Driven Universal Segmentation Model as Well as A Strong Representation Learner  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ye, Yiwen Xie, Yutong Zhang, Jianpeng Chen, Ziyang Xia, Yong Northwestern Polytech Univ Sch Comp Sci & Engn Natl Engn Lab Integrated Aero Space Ground Ocean Xian 710072 Peoples R China Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia Northwestern Polytech Univ Ningbo Inst Ningbo 315048 Peoples R China
the universal model emerges as a promising trend for medical image segmentation, paving up the way to build medical imaging large model (MILM). One popular strategy to build universal models is to encode each task as ... 详细信息
来源: 评论
Learning Robust Classifier for Imbalanced medical image Dataset with Noisy Labels by Minimizing Invariant Risk  26th
Learning Robust Classifier for Imbalanced Medical Image Data...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Li, Jinpeng Cao, Hanqun Wang, Jiaze Liu, Furui Dou, Qi Chen, Guangyong Pheng-Ann Heng Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China Chinese Univ Hong Kong Inst Med Intelligence & XR Shatin Hong Kong Peoples R China Zhejiang Lab Hangzhou Peoples R China
In medical image analysis, imbalanced noisy dataset classification poses a long-standing and critical problem since clinical large-scale datasets often attain noisy labels and imbalanced distributions through annotati... 详细信息
来源: 评论