咨询与建议

限定检索结果

文献类型

  • 2,484 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,690 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,271 篇 工学
    • 2,063 篇 计算机科学与技术...
    • 1,060 篇 生物医学工程(可授...
    • 847 篇 软件工程
    • 508 篇 光学工程
    • 263 篇 生物工程
    • 229 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 148 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 17 篇 建筑学
  • 1,767 篇 医学
    • 1,333 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 635 篇 理学
    • 332 篇 数学
    • 320 篇 生物学
    • 289 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 98 篇 管理学
    • 63 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 303 篇 image segmentati...
  • 118 篇 image registrati...
  • 105 篇 medical imaging
  • 96 篇 magnetic resonan...
  • 91 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 34 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 univ n carolina ...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 chinese univ hon...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 24 篇 davatzikos chris...
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 18 篇 hawkes david j.
  • 17 篇 duncan james s.

语言

  • 2,667 篇 英文
  • 19 篇 其他
  • 8 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2691 条 记 录,以下是381-390 订阅
排序:
Democratizing Pathological image Segmentation with Lay Annotators via Molecular-Empowered Learning  26th
Democratizing Pathological Image Segmentation with Lay Annot...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Deng, Ruining Li, Yanwei Li, Peize Wang, Jiacheng Remedios, Lucas W. Agzamkhodjaev, Saydolimkhon Asad, Zuhayr Liu, Quan Cui, Can Wang, Yaohong Wang, Yihan Tang, Yucheng Yang, Haichun Huo, Yuankai Vanderbilt Univ Nashville TN 37215 USA NVIDIA Corp Santa Clara CA USA NVIDIA Corp Bethesda MD USA Vanderbilt Univ Med Ctr Nashville TN 37232 USA
Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annota... 详细信息
来源: 评论
Federated Condition Generalization on Low-dose CT Reconstruction via Cross-domain Learning  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Chen, Shixuan Cao, Boxuan Du, Yinda Zhang, Yaoduo He, Ji Bian, Zhaoying Zeng, Dong Ma, Jianhua Southern Med Univ Sch Biomed Engn Guangzhou Guangdong Peoples R China Southern Med Univ Zhujiang Hosp Dept Radiol Guangzhou Guangdong Peoples R China Pazhou Lab Huangpu Guangzhou Guangdong Peoples R China Guangzhou Med Univ Sch Biomed Engn Guangzhou Guangdong Peoples R China
the harmful radiation dose associated with CT imaging is a major concern because it can cause genetic diseases. Acquiring CT data at low radiation doses has become a pressing goal. Deep learning (DL)-based methods hav... 详细信息
来源: 评论
3D medical image Segmentation with Sparse Annotation via Cross-Teaching Between 3D and 2D Networks  1
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Cai, Heng Qi, Lei Yu, Qian Shi, Yinghuan Gao, Yang Nanjing Univ Natl Inst Hlth Care Data Sci State Key Lab Novel Software Technol Nanjing Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing Peoples R China Shandong Womens Univ Sch Data & Comp Sci Jinan Peoples R China
medical image segmentation typically necessitates a large and precisely annotated dataset. However, obtaining pixel-wise annotation is a labor-intensive task that requires significant effort from domain experts, makin... 详细信息
来源: 评论
Adaptive Region Selection for Active Learning in Whole Slide image Semantic Segmentation  26th
Adaptive Region Selection for Active Learning in Whole Slide...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Qiu, Jingna Wilm, Frauke Oettl, Mathias Schlereth, Maja Liu, Chang Heimann, Tobias Aubreville, Marc Breininger, Katharina Friedrich Alexander Univ Erlangen Nurnberg Dept Artificial Intelligence Biomed Engn Erlangen Germany Friedrich Alexander Univ Erlangen Nurnberg Dept Comp Sci Pattern Recognit Lab Erlangen Germany Siemens Healthineers Digital Technol & Innovat Erlangen Germany Tech Hsch Ingolstadt Ingolstadt Germany
the process of annotating histological gigapixel-sized whole slide images (WSIs) at the pixel level for the purpose of training a supervised segmentation model is time-consuming. Region-based active learning (AL) invo... 详细信息
来源: 评论
Retinal Age Estimation with Temporal Fundus images Enhanced Progressive Label Distribution Learning  26th
Retinal Age Estimation with Temporal Fundus Images Enhanced ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Yu, Zhen Chen, Ruiye Gui, Peng Ju, Lie Shang, Xianwen Zhu, Zhuoting He, Mingguang Ge, Zongyuan Monash Univ Cent Clin Sch Fac Med Nursing & Hlth Sci Melbourne Vic Australia Monash Univ AIM Hlth Lab Melbourne Vic Australia Monash Univ Monash Med AI Melbourne Vic Australia Wuhan Univ Sch Comp Sci Wuhan Hubei Peoples R China Univ Melbourne Ctr Eye Res Australia Melbourne Vic Australia Univ Melbourne Dept Surg Ophthalmol Melbourne Vic Australia Monash Univ Fac Engn Melbourne Vic Australia Monash Univ Fac IT Melbourne Vic Australia
Retinal age has recently emerged as a reliable ageing biomarker for assessing risks of ageing-related diseases. Several studies propose to train deep learning models to estimate retinal age from fundus images. However... 详细信息
来源: 评论
SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain medical image Segmentation  26th
SATTA: Semantic-Aware Test-Time Adaptation for Cross-Domain ...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Zhang, Yuhan Huang, Kun Chen, Cheng Chen, Qiang Pheng-Ann Heng Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Chinese Univ Hong Kong Inst Med Intelligence & XR Hong Kong Peoples R China Chinese Univ Hong Kong Shenzhen Res Inst Hong Kong Peoples R China Nanjing Univ Sci & Technol Dept Comp Sci & Engn Nanjing Peoples R China Harvard Med Sch Ctr Adv Med Comp & Anal Boston MA 02115 USA Massachusetts Gen Hosp Boston MA 02114 USA
Cross-domain distribution shift is a common problem for medical image analysis because medical images from different devices usually own varied domain distributions. Test-time adaptation (TTA) is a promising solution ... 详细信息
来源: 评论
Collaborative Modality Generation and Tissue Segmentation for Early-Developing Macaque Brain MR images  26th
Collaborative Modality Generation and Tissue Segmentation fo...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Wu, Xueyang Zhong, Tao Liang, Shujun Wang, Li Li, Gang Zhang, Yu Southern Med Univ Sch Biomed Engn Guangzhou 510515 Peoples R China Southern Med Univ Guangdong Prov Key Lab Med Image Proc Guangzhou 510515 Peoples R China Southern Med Univ Guangdong Prov Engn Lab Med Imaging & Diagnost Te Guangzhou 510515 Peoples R China Univ N Carolina Dept Radiol Chapel Hill NC USA Univ N Carolina BRIC Chapel Hill NC 27515 USA
In neuroscience research, automatic segmentation of macaque brain tissues in magnetic resonance imaging (MRI) is crucial for understanding brain structure and function during development and evolution. Acquisition of ... 详细信息
来源: 评论
Tracking Lesion Evolution Using a Boundary Enhanced Approach for MS Change Segmentation (BEAMS)
Tracking Lesion Evolution Using a Boundary Enhanced Approac...
收藏 引用
Workshop on Longitudinal Disease Tracking and Modeling with medical images and Data, LDTM 2024, 5th international Workshop on Multiscale Multimodal medical Imaging, MMMI 2024, 1st Workshop on Machine Learning for Multimodal/-sensor Healthcare Data, ML4MHD2024 and Workshop on Multimodal Learning and Fusion Across Scales for Clinical Decision Support, ML-CDS 2024 held in conjunction with the 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Mathur, Prateek Kelly, Brendan S. Killeen, Ronan P Lawlor, Aonghus School of Computer Science University College Dublin Dublin Ireland School of Medicine University College Dublin Dublin Ireland Insight SFI Research Centre for Data Analytics Dublin Ireland St. Vincent’s University Hospital Dublin Ireland
Multiple sclerosis (MS) is a chronic disease of the Central Nervous System (CNS) primarily characterised on Magnetic Resonance Imaging (MRI) by hyper-intense lesions. Accurate and timely identification of new lesions ... 详细信息
来源: 评论
atTRACTive: Semi-automatic White Matter Tract Segmentation Using Active Learning  26th
atTRACTive: Semi-automatic White Matter Tract Segmentation U...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Peretzke, Robin Maier-Hein, Klaus H. Bohn, Jonas Kirchhoff, Yannick Roy, Saikat Oberli-Palma, Sabrina Becker, Daniela Lenga, Pavlina Neher, Peter German Canc Res Ctr Div Med Image Comp MIC Heidelberg Germany Heidelberg Univ Med Fac Heidelberg Heidelberg Germany German Canc Consortium DKTK Partner Site Heidelberg Heidelberg Germany NCT Heidelberg Natl Ctr Tumor Dis NCT Heidelberg Germany DKFZ Heidelberg Germany Univ Med Ctr Heidelberg Heidelberg Germany Univ Heidelberg Hosp Pattern Anal & Learning Grp Heidelberg Germany HIDSS4Health Helmholtz Informat & Data Sci Sch Hlth Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany Heidelberg Univ Fac Biosci Heidelberg Germany Univ Heidelberg Hosp Dept Neurosurg Heidelberg Germany IU Int Univ Appl Sci Erfurt Germany
Accurately identifying white matter tracts in medical images is essential for various applications, including surgery planning and tract-specific analysis. Supervised machine learning models have reached state-of-the-... 详细信息
来源: 评论
MS-MT++: Enhanced Multi-scale Mean Teacher for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation  1
收藏 引用
Challenge on Brain Tumor Segmentation, BraTS 2023, international Challenge on Cross-Modality Domain Adaptation for medical image Segmentation, CrossMoDA 2023, held in conjunction with the medical image computing for computer assisted intervention conference, MICCAI 2023
作者: Zhao, Ziyuan Lin, Ruikai Xu, Kaixin Yang, Xulei Guan, Cuntai A*STAR Singapore Singapore
Domain shift has been a long-standing issue for medical image segmentation. Unsupervised domain adaptation (UDA) methods have recently achieved promising cross-modality segmentation performance by distilling knowledge... 详细信息
来源: 评论