咨询与建议

限定检索结果

文献类型

  • 2,484 篇 会议
  • 123 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,691 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,272 篇 工学
    • 2,064 篇 计算机科学与技术...
    • 1,061 篇 生物医学工程(可授...
    • 848 篇 软件工程
    • 509 篇 光学工程
    • 263 篇 生物工程
    • 229 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 148 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 18 篇 建筑学
  • 1,767 篇 医学
    • 1,334 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 635 篇 理学
    • 332 篇 数学
    • 320 篇 生物学
    • 289 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 98 篇 管理学
    • 63 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 302 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 91 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 department of co...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,678 篇 英文
  • 9 篇 其他
  • 6 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2692 条 记 录,以下是471-480 订阅
排序:
QID2: An image-Conditioned Diffusion Model for Q-Space Up-Sampling of DWI Data  15th
QID2: An Image-Conditioned Diffusion Model for Q-Space Up-S...
收藏 引用
15th international Workshop on Computational Diffusion MRI, CDMRI 2024, held in conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
作者: Chen, Zijian Wang, Jueqi Venkataraman, Archana Department of Electrical and Computer Engineering Boston University Boston United States
We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID2, takes as input a set of lo... 详细信息
来源: 评论
image Quality Transfer of Diffusion MRI Guided By High-Resolution Structural MRI  15th
Image Quality Transfer of Diffusion MRI Guided By High-Reso...
收藏 引用
15th international Workshop on Computational Diffusion MRI, CDMRI 2024, held in conjunction with 27th international conference on medical image computing and computer-assisted intervention, MICCAI 2024
作者: Cicimen, Alp G. Tregidgo, Henry F. J. Figini, Matteo Messaritaki, Eirini B. McNabb, Carolyn Palombo, Marco Evans, C. John Cercignani, Mara Jones, Derek K. C. Alexander, Daniel Centre for Medical Image Computing University College London London United Kingdom Cardiff University Brain Research Imaging Centre Cardiff University Cardiff United Kingdom
Prior work on the image Quality Transfer on Diffusion MRI (dMRI) has shown significant improvement over traditional interpolation methods. However, the difficulty in obtaining ultra-high resolution Diffusion MRI scans... 详细信息
来源: 评论
Test-Time Adaptation with Shape Moments for image Segmentation  25th
Test-Time Adaptation with Shape Moments for Image Segmentati...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Bateson, Mathilde Lombaert, Herve Ben Ayed, Ismail ETS Montreal Montreal PQ Canada
Supervised learning is well-known to fail at generalization under distribution shifts. In typical clinical settings, the source data is inaccessible and the target distribution is represented with a handful of samples... 详细信息
来源: 评论
TransFusion: Multi-view Divergent Fusion for medical image Segmentation with Transformers  25th
TransFusion: Multi-view Divergent Fusion for Medical Image S...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Liu, Di Gao, Yunhe Zhangli, Qilong Han, Ligong He, Xiaoxiao Xia, Zhaoyang Wen, Song Chang, Qi Yan, Zhennan Zhou, Mu Metaxas, Dimitris Rutgers State Univ Dept Comp Sci New Brunswick NJ 08901 USA SenseBrain Res San Jose CA USA
Combining information from multi-view images is crucial to improve the performance and robustness of automated methods for disease diagnosis. However, due to the non-alignment characteristics of multi-view images, bui... 详细信息
来源: 评论
You Don't Have to Be Perfect to Be Amazing: Unveil the Utility of Synthetic images  26th
You Don't Have to Be Perfect to Be Amazing: Unveil the Utili...
收藏 引用
26th international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Xing, Xiaodan Felder, Federico Nan, Yang Papanastasiou, Giorgos Walsh, Simon Yang, Guang Imperial Coll London Natl Heart & Lung Inst London England Royal Brompton Hosp London England Imperial Coll London Bioengn Dept London W12 7SL England Imperial Coll London Imperial X London W12 7SL England Univ Essex Colchester Essex England Imperial Coll London Natl Heart & Lung Inst London SW7 2AZ England Royal Brompton Hosp Cardiovasc Res Ctr London SW3 6NP England Kings Coll London Sch Biomed Engn & Imaging Sci London WC2R 2LS England
Synthetic images generated from deep generative models have the potential to address data scarcity and data privacy issues. the selection of synthesis models is mostly based on image quality measurements, and most res... 详细信息
来源: 评论
Scribble-Supervised medical image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision  25th
Scribble-Supervised Medical Image Segmentation via Dual-Bran...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Luo, Xiangde Hu, Minhao Liao, Wenjun Zhai, Shuwei Song, Tao Wang, Guotai Zhang, Shaoting Univ Elect Sci & Technol China Chengdu Peoples R China Shanghai Lab Shanghai Peoples R China SenseTime Res Shanghai Peoples R China
medical image segmentation plays an irreplaceable role in computer-assisted diagnosis, treatment planning and following-up. Collecting and annotating a large-scale dataset is crucial to training a powerful segmentatio... 详细信息
来源: 评论
Evaluating STU-Net for Brain Tumor Segmentation  1
收藏 引用
Challenge on Brain Tumor Segmentation, BraTS 2023, international Challenge on Cross-Modality Domain Adaptation for medical image Segmentation, CrossMoDA 2023, held in conjunction with the medical image computing for computer assisted intervention conference, MICCAI 2023
作者: Huang, Ziyan Ye, Jin Wang, Haoyu Deng, Zhongying Su, Yanzhou Li, Tianbin Cheng, Junlong Chen, Jianpin Guo, Sizheng Shen, Yiqing He, Junjun Shanghai AI Laboratory Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China University of Cambridge Cambridge United Kingdom
Brain tumor segmentation is vital in addressing the tumor’s high heterogeneity, enhancing accurate diagnosis, guiding effective treatment, and improving prognosis predictions. In recent years, state-of-the-art method... 详细信息
来源: 评论
Uncertainty Aware Sampling Framework of Weak-Label Learning for Histology image Classification  25th
Uncertainty Aware Sampling Framework of Weak-Label Learning ...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Aljuhani, Asmaa Casukhela, Ishya Chan, Jany Liebner, David Machiraju, Raghu Ohio State Univ Dept Comp Sci & Engn Columbus OH USA Ohio State Univ Dept Biomed Informat Coll Med Columbus OH USA Ohio State Univ Dept Pathol Coll Med Columbus OH USA Ohio State Univ Div Med Oncol Dept Internal Med Columbus OH USA
Advances in digital pathology and deep learning have enabled robust disease classification, better diagnosis, and prognosis. In real-world settings, readily available and inexpensive image-level labels from pathology ... 详细信息
来源: 评论
Online Easy Example Mining for Weakly-Supervised Gland Segmentation from Histology images  25th
Online Easy Example Mining for Weakly-Supervised Gland Segme...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Li, Yi Yu, Yiduo Zou, Yiwen Xiang, Tianqi Li, Xiaomeng Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China HKUST Shenzhen Res Inst Shenzhen Peoples R China
Developing an AI-assisted gland segmentation method from histology images is critical for automatic cancer diagnosis and prognosis;however, the high cost of pixel-level annotations hinders its applications to broader ... 详细信息
来源: 评论
FUSSNet: Fusing Two Sources of Uncertainty for Semi-supervised medical image Segmentation  25th
FUSSNet: Fusing Two Sources of Uncertainty for Semi-supervis...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Xiang, Jinyi Qiu, Peng Yang, Yang Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples Hosp 9 Dept Vasc Surg Shanghai Peoples R China
In recent years, various semi-supervised learning (SSL) methods have been developed to deal with the scarcity of labeled data in medical image segmentation. Especially, many of them focus on the uncertainty caused by ... 详细信息
来源: 评论