咨询与建议

限定检索结果

文献类型

  • 2,484 篇 会议
  • 122 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,690 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,271 篇 工学
    • 2,063 篇 计算机科学与技术...
    • 1,060 篇 生物医学工程(可授...
    • 847 篇 软件工程
    • 508 篇 光学工程
    • 263 篇 生物工程
    • 229 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 148 篇 信息与通信工程
    • 144 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 17 篇 建筑学
  • 1,767 篇 医学
    • 1,333 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 635 篇 理学
    • 332 篇 数学
    • 320 篇 生物学
    • 289 篇 物理学
    • 106 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 98 篇 管理学
    • 63 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 303 篇 image segmentati...
  • 118 篇 image registrati...
  • 105 篇 medical imaging
  • 96 篇 magnetic resonan...
  • 91 篇 deep learning
  • 62 篇 image enhancemen...
  • 60 篇 medical image se...
  • 58 篇 image reconstruc...
  • 57 篇 segmentation
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 34 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 28 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 51 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,667 篇 英文
  • 19 篇 其他
  • 8 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2691 条 记 录,以下是561-570 订阅
排序:
Learning Incrementally to Segment Multiple Organs in a CT image  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Liu, Pengbo Wang, Xia Fan, Mengsi Pan, Hongli Yin, Minmin Zhu, Xiaohong Du, Dandan Zhao, Xiaoying Xiao, Li Ding, Lian Wu, Xingwang Zhou, S. Kevin Univ Sci & Technol China Ctr Med Imaging Robot Analyt Comp & Learning MIRA Sch Biomed Engn Suzhou Peoples R China Univ Sci & Technol China Suzhou Inst Adv Res Suzhou Peoples R China Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing Peoples R China Anhui Med Univ Affiliated Hosp 1 Hefei Anhui Peoples R China Huawei Cloud Comp Technol Co Ltd Dongguan Peoples R China
there exists a large number of datasets for organ segmentation, which are partially annotated and sequentially constructed. A typical dataset is constructed at a certain time by curating medical images and annotating ... 详细信息
来源: 评论
Spatiotemporal Attention for Early Prediction of Hepatocellular Carcinoma Based on Longitudinal Ultrasound images  1
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zhang, Yiwen Hu, Chengguang Zhong, Liming Song, Yangda Sun, Jiarun Li, Meng Dai, Lin Zhou, Yuanping Yang, Wei Southern Med Univ Sch Biomed Engn Guangzhou Peoples R China Southern Med Univ Guangdong Prov Key Lab Med Image Proc Guangzhou Peoples R China Southern Med Univ Nanfang Hosp Dept Gastroenterol Guangzhou Peoples R China Southern Med Univ Nanfang Hosp Dept Infect Dis & Hepatol Unit Guangzhou Peoples R China
Early screening is an important way to reduce the mortality of hepatocellular carcinoma (HCC) and improve its prognosis. As a noninvasive, economic, and safe procedure, B-mode ultrasound is currently the most common i... 详细信息
来源: 评论
Identifying and Combating Bias in Segmentation Networks by Leveraging Multiple Resolutions  25th
Identifying and Combating Bias in Segmentation Networks by L...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Henschel, Leonie Kuegler, David Andrews, Derek S. Nordahl, Christine W. Reuter, Martin German Ctr Neurodegenerat Dis DZNE Bonn Germany Univ Calif Davis MIND Inst Davis CA USA Univ Calif Davis Dept Psychiat & Behav Sci Davis CA USA Harvard Med Sch Dept Radiol Boston MA 02115 USA Mass Gen Hosp AA Martinos Ctr Biomed Imag Boston MA 02114 USA
Exploration of bias has significant impact on the transparency and applicability of deep learning pipelines in medical settings, yet is so far woefully understudied. In this paper, we consider two separate groups for ... 详细信息
来源: 评论
LifeLonger: A Benchmark for Continual Disease Classification  25th
LifeLonger: A Benchmark for Continual Disease Classification
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Derakhshani, Mohammad Mahdi Najdenkoska, Ivona Van Sonsbeek, Tom Zhen, Xiantong Mahapatra, Dwarikanath Worring, Marcel Snoek, Cees G. M. Univ Amsterdam Amsterdam Netherlands Inception Inst Artificial Intelligence Abu Dhabi U Arab Emirates
Deep learning models have shown a great effectiveness in recognition of findings in medical images. However, they cannot handle the ever-changing clinical environment, bringing newly annotated medical data from differ... 详细信息
来源: 评论
AdaTriplet: Adaptive Gradient Triplet Loss with Automatic Margin Learning for Forensic medical image Matching  25th
AdaTriplet: Adaptive Gradient Triplet Loss with Automatic Ma...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Nguyen, Khanh Nguyen, Huy Hoang Tiulpin, Aleksei Univ Oulu Oulu Finland
this paper tackles the challenge of forensic medical image matching (FMIM) using deep neural networks (DNNs). FMIM is a particular case of content-based image retrieval (CBIR). the main challenge in FMIM compared to t... 详细信息
来源: 评论
SETMIL: Spatial Encoding Transformer-Based Multiple Instance Learning for Pathological image Analysis  25th
SETMIL: Spatial Encoding Transformer-Based Multiple Instance...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Zhao, Yu Lin, Zhenyu Sun, Kai Zhang, Yidan Huang, Junzhou Wang, Liansheng Yao, Jianhua Xiamen Univ Sch Informat Dept Comp Sci Xiamen 361005 Peoples R China Al Lab Tencent Shenzhen 518000 Peoples R China Cent South Univ Sch Basic Med Sci Changsha 410013 Peoples R China Sichuan Univ Sch Comp Sci Chengdu 610065 Peoples R China
Considering the huge size of the gigapixel whole slide image (WSI), multiple instance learning (MIL) is normally employed to address pathological image analysis tasks, where learning an informative and effective repre... 详细信息
来源: 评论
Bag of Tricks for Ultra-widefield Fundus image Quality Assessment  1st
Bag of Tricks for Ultra-widefield Fundus Image Quality Ass...
收藏 引用
1st MICCAI Challenge on Ultra-Widefield Fundus Imaging for Diabetic Retinopathy, UWF4DR 2024, Held in Conjunction with 27th international conference on medical image computing and computer assisted intervention, MICCAI 2024
作者: Sun, Junfeng Wang, Xinliang Gu, Yunchao State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing100191 China
Ultra-widefield fundus images provide a broad view and play an important role in the integration of deep learning and healthcare. therefore, it is important to obtain high-quality ultra-widefield fundus image data. We... 详细信息
来源: 评论
Spatial-Hierarchical Graph Neural Network with Dynamic Structure Learning for Histological image Classification  25th
Spatial-Hierarchical Graph Neural Network with Dynamic Struc...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Hou, Wentai Huang, Helong Peng, Qiong Yu, Rongshan Yu, Lequan Wang, Liansheng Xiamen Univ Sch Informat Informat & Commun Engn Dept Xiamen Peoples R China Xiamen Univ Sch Informat Dept Comp Sci Xiamen Peoples R China Univ Hong Kong Dept Stat & Actuarial Sci Pok Fu Lam Hong Kong Peoples R China
Graph neural network (GNN) has achieved tremendous success in histological image classification, as it can explicitly model the notion and interaction of different biological entities (e.g., cell, tissue and etc.). Ho... 详细信息
来源: 评论
ConTrans: Improving Transformer with Convolutional Attention for medical image Segmentation  25th
ConTrans: Improving Transformer with Convolutional Attention...
收藏 引用
25th international conference on medical image computing and computer assisted intervention (MICCAI)
作者: Lin, Ailiang Xu, Jiayu Li, Jinxing Lu, Guangming Harbin Inst Technol Shenzhen Peoples R China
Over the past few years, convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant architectures in medical image segmentation. Although CNNs can efficiently capture local representation... 详细信息
来源: 评论
Classification of Myopic Maculopathy images with Self-supervised Driven Multiple Instance Learning Network  1
收藏 引用
Myopic Maculopathy Analysis Challenge, MMAC 2023, which was a part of the 26th international conference on medical image computing and computer assisted intervention, MICCAI 2023
作者: Li, Jiawen Soon, Jaehyeon Zhang, Qilai Zhang, Qifan He, Yonghong Shenzhen International Graduate School Tsinghua University Shenzhen China Shenzhen China
Myopia is a high-incidence disease that widely exists across various regions. If left unaddressed, it may escalate into high myopia. the leading cause of visual impairment is myopic maculopathy. Currently, certain dee... 详细信息
来源: 评论