咨询与建议

限定检索结果

文献类型

  • 2,491 篇 会议
  • 124 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,699 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,280 篇 工学
    • 2,072 篇 计算机科学与技术...
    • 1,064 篇 生物医学工程(可授...
    • 851 篇 软件工程
    • 510 篇 光学工程
    • 263 篇 生物工程
    • 230 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 151 篇 信息与通信工程
    • 146 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 17 篇 建筑学
  • 1,771 篇 医学
    • 1,337 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 638 篇 理学
    • 335 篇 数学
    • 320 篇 生物学
    • 289 篇 物理学
    • 108 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 98 篇 管理学
    • 63 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 304 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 92 篇 deep learning
  • 62 篇 image enhancemen...
  • 61 篇 medical image se...
  • 59 篇 segmentation
  • 58 篇 image reconstruc...
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 29 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 52 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,668 篇 英文
  • 27 篇 其他
  • 9 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2700 条 记 录,以下是821-830 订阅
排序:
the 19th international conference on medical image computing and computer-assisted intervention (MICCAI 2016)
收藏 引用
medical image ANALYSIS 2017年 41卷 1-1页
作者: Ourselin, Sebastien Sabuncu, Mert R. Wells, William Joskowicz, Leo Unal, Gozde Maier, Andreas Univ Erlangen Nurnberg Dept Comp Sci Erlangen Germany
来源: 评论
Preface
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2025年 15188 LNCS卷 v页
作者: Antony, Bhavna Lee, Cecilia S. Chen, Hao Fu, Huazhu Fang, Huihui Zheng, Yalin Federation University Australia Mount HelenVIC Australia University of Washington SeattleWA United States Hong Kong University of Science and Technology Kowloon Hong Kong Institute of High Performance Computing Singapore Singapore Pazhou Lab. Guangzhou China
来源: 评论
the rise of AI language pathologists: exploring two-level prompt learning for few-shot weakly-supervised whole slide image classification  23
The rise of AI language pathologists: exploring two-level pr...
收藏 引用
Proceedings of the 37th international conference on Neural Information Processing Systems
作者: Linhao Qu Xiaoyuan Luo Kexue Fu Manning Wang Zhijian Song Digital Medical Research Center School of Basic Medical Science Fudan University and Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention
this paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization...
来源: 评论
High Speed and Efficient Reconfigurable Histogram Equalisation Architecture for image Contrast Enhancement  8th
High Speed and Efficient Reconfigurable Histogram Equalisati...
收藏 引用
8th international conference on Information, Communication and computing Technology, ICICCT 2023
作者: Agalya, P. Hanumantharaju, M.C. Department of Electronics and Communication Engineering Sapthagiri College of Engineering Bangalore India Department of Electronics and Communication Engineering BMS Institute of Technology and Management Bangalore India
Histogram equalisation is a point processing technique used to improve image quality in wide variety of applications including real-time video surveillance, medical imaging, industrial automation, intelligent self-nav... 详细信息
来源: 评论
LogTrans: Providing Efficient Local-Global Fusion with Transformer and CNN Parallel Network for Biomedical image Segmentation
LogTrans: Providing Efficient Local-Global Fusion with Trans...
收藏 引用
IEEE international conference on High Performance computing and Communications (HPCC)
作者: Xingqing Nie Xiaogen Zhou Zhiqiang Li Luoyan Wang Xingtao Lin Tong Tong College of Physics and Information Engineering Fuzhou University Fuzhou China Fujian Key Lab of Medical Instrumentation and Pharmaceutical Technology Fuzhou University Fuzhou China Imperial Vision Technology Fuzhou China
Accurate biomedical image segmentation is a prerequisite for excellent computer-aided diagnosis (CAD) systems. A series of researches have shown that convolutional neural networks (CNNs) have made impressive progress ... 详细信息
来源: 评论
Approximate Nearest-Neighbour Fields via Massively-Parallel Propagation-assisted K-D Trees  8
Approximate Nearest-Neighbour Fields via Massively-Parallel ...
收藏 引用
8th IEEE international conference on Big Data (Big Data)
作者: Oancea, Cosmin Eugen Robroek, Ties Gieseke, Fabian Univ Copenhagen Dept Comp Sci DIKU Copenhagen Denmark Univ Munster Munster Germany
Nearest neighbour fields accurately and intuitively describe the transformation between two images and have been heavily used in computer vision. Generating such fields, however, is not an easy task due to the induced... 详细信息
来源: 评论
Progression Free Survival Prediction for Head and Neck Cancer Using Deep Learning Based on Clinical and PET/CT Imaging Data  2nd
Progression Free Survival Prediction for Head and Neck Cance...
收藏 引用
2nd 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2021, held in conjunction with 24th international conference on medical image computing and computer-assisted intervention, MICCAI 2021
作者: Naser, Mohamed A. Wahid, Kareem A. Mohamed, Abdallah S. R. Abdelaal, Moamen Abobakr He, Renjie Dede, Cem van Dijk, Lisanne V. Fuller, Clifton D. Department of Radiation Oncology The University of Texas MD Anderson Cancer HoustonTX77030 United States
Determining progression-free survival (PFS) for head and neck squamous cell carcinoma (HNSCC) patients is a challenging but pertinent task that could help stratify patients for improved overall outcomes. PET/CT images... 详细信息
来源: 评论
LNQ 2023 challenge: Benchmark of weakly-supervised techniques for mediastinal lymph node quantification
arXiv
收藏 引用
arXiv 2024年
作者: Dorent, Reuben Khajavi, Roya Idris, Tagwa Ziegler, Erik Somarouthu, Bhanusupriya Jacene, Heather LaCasce, Ann Deissler, Jonathan Ehrhardt, Jan Engelson, Sofija Fischer, Stefan M. Gu, Yun Handels, Heinz Kasai, Satoshi Kondo, Satoshi Maier-Hein, Klaus Schnabel, Julia A. Wang, Guotai Wang, Litingyu Wald, Tassilo Yang, Guang-Zhong Zhang, Hanxiao Zhang, Minghui Pieper, Steve Harris, Gordon Kikinis, Ron Kapur, Tina Brigham and Women’s Hospital Harvard Medical School BostonMA United States Massachusetts General Hospital Harvard Medical School BostonMA United States Yunu Inc. CaryNC United States Isomics Inc CambridgeMA United States Dana-Farber Cancer Institute BostonMA United States Technical University Munich Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Institute of Medical Informatics University of Lübeck Lübeck Germany German Research Center for Artificial Intelligence Lübeck Germany Niigata University of Health and Welfare Niigata Japan Muroran Institute of Technology Hokkaido Japan Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China University of Electronic Science and Technology of China Chengdu China Heidelberg Germany University of Heidelberg Heidelberg Germany Shanghai AI laboratory Shanghai China
Accurate assessment of lymph node size in 3D CT scans is crucial for cancer staging, therapeutic management, and monitoring treatment response. Existing state-of-the-art segmentation frameworks in medical imaging ofte... 详细信息
来源: 评论
COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D medical image Segmentation based on Target-aware Domain Translation and Iterative Self-Training
arXiv
收藏 引用
arXiv 2022年
作者: Shin, Hyungseob Kim, Hyeongyu Kim, Sewon Jun, Yohan Eo, Taejoon Hwang, Dosik School of Electrical and Electronic Engineering Yonsei University Korea Republic of
Recent advances in deep learning-based medical image segmentation studies achieve nearly human-level performance when in fully supervised condition. However, acquiring pixel-level expert annotations is extremely expen... 详细信息
来源: 评论
An Enhanced Coarse-to-Fine Framework for the Segmentation of Clinical Target Volume  23rd
An Enhanced Coarse-to-Fine Framework for the Segmentation of...
收藏 引用
Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR images Challenge, ABCs 2020, Learn2Reg Challenge, L2R 2020 and thyroid Nodule Segmentation and Classification in Ultrasound images Challenge, TN-SCUI 2020 held in conjunction with 23rd international conference on medical image computing and computer-assisted intervention, MICCAI 2020
作者: Chen, Huai Qian, Dahong Liu, Weiping Li, Hui Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai200240 China Department of Algorithm and Research Shanghai Aitrox Technology Co. Ltd. Shanghai China National Key Laboratory of Science and Technology on Nano/Micro Fabrication Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education Institute of Micro-Nano Science and Technology Shanghai Jiao Tong University Shanghai200240 China
In radiation therapy, obtaining accurate boundary of the clinical target volume (CTV) is the vital step to decrease the risk of treatment failures. However, it is a time-consuming and laborious task to obtain the deli... 详细信息
来源: 评论