咨询与建议

限定检索结果

文献类型

  • 2,491 篇 会议
  • 124 篇 期刊文献
  • 85 册 图书

馆藏范围

  • 2,699 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,280 篇 工学
    • 2,072 篇 计算机科学与技术...
    • 1,064 篇 生物医学工程(可授...
    • 851 篇 软件工程
    • 510 篇 光学工程
    • 263 篇 生物工程
    • 230 篇 电气工程
    • 191 篇 电子科学与技术(可...
    • 151 篇 信息与通信工程
    • 146 篇 控制科学与工程
    • 78 篇 仪器科学与技术
    • 33 篇 核科学与技术
    • 28 篇 力学(可授工学、理...
    • 22 篇 机械工程
    • 22 篇 化学工程与技术
    • 22 篇 安全科学与工程
    • 17 篇 建筑学
  • 1,771 篇 医学
    • 1,337 篇 特种医学
    • 958 篇 临床医学
    • 365 篇 基础医学(可授医学...
    • 260 篇 药学(可授医学、理...
    • 207 篇 医学技术(可授医学...
    • 29 篇 公共卫生与预防医...
  • 638 篇 理学
    • 335 篇 数学
    • 320 篇 生物学
    • 289 篇 物理学
    • 108 篇 统计学(可授理学、...
    • 33 篇 化学
    • 16 篇 系统科学
  • 98 篇 管理学
    • 63 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
  • 11 篇 教育学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 法学

主题

  • 304 篇 image segmentati...
  • 118 篇 image registrati...
  • 106 篇 medical imaging
  • 97 篇 magnetic resonan...
  • 92 篇 deep learning
  • 62 篇 image enhancemen...
  • 61 篇 medical image se...
  • 59 篇 segmentation
  • 58 篇 image reconstruc...
  • 54 篇 artificial intel...
  • 53 篇 image processing...
  • 43 篇 pattern recognit...
  • 35 篇 health informati...
  • 35 篇 image analysis
  • 33 篇 image classifica...
  • 30 篇 deformation
  • 30 篇 computer graphic...
  • 30 篇 computerized tom...
  • 29 篇 semi-supervised ...
  • 28 篇 contrastive lear...

机构

  • 30 篇 ucl ctr med imag...
  • 19 篇 simon fraser uni...
  • 17 篇 ucl ctr med imag...
  • 16 篇 shenzhen univ ma...
  • 16 篇 shenzhen univ me...
  • 14 篇 biomedical image...
  • 14 篇 national center ...
  • 14 篇 univ penn dept r...
  • 14 篇 imperial coll lo...
  • 13 篇 hong kong univ s...
  • 13 篇 chinese univ hon...
  • 12 篇 centre for medic...
  • 12 篇 college of physi...
  • 12 篇 shanghai united ...
  • 12 篇 univ n carolina ...
  • 12 篇 univ penn dept r...
  • 11 篇 department of co...
  • 10 篇 tencent jarvis l...
  • 10 篇 siemens corp res...
  • 9 篇 yale univ dept b...

作者

  • 78 篇 rueckert daniel
  • 61 篇 shen dinggang
  • 52 篇 navab nassir
  • 48 篇 hamarneh ghassan
  • 46 篇 ourselin sebasti...
  • 41 篇 yang guang-zhong
  • 23 篇 ni dong
  • 23 篇 glocker ben
  • 22 篇 wang qian
  • 22 篇 davatzikos chris...
  • 21 篇 alexander daniel...
  • 20 篇 zhou s. kevin
  • 19 篇 golland polina
  • 19 篇 abugharbieh rafe...
  • 19 篇 fu huazhu
  • 19 篇 bai wenjia
  • 18 篇 sato yoshinobu
  • 18 篇 yang xin
  • 17 篇 duncan james s.
  • 17 篇 yap pew-thian

语言

  • 2,668 篇 英文
  • 27 篇 其他
  • 9 篇 中文
检索条件"任意字段=8th International Conference on Medical Image Computing and Computer-Assisted Intervention"
2700 条 记 录,以下是861-870 订阅
排序:
Supervised Uncertainty Quantification for Segmentation with Multiple Annotations  22nd
Supervised Uncertainty Quantification for Segmentation with ...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Hu, Shi Worrall, Daniel Knegt, Stefan Veeling, Bas Huisman, Henkjan Welling, Max Univ Amsterdam Amsterdam Netherlands Radboud Univ Nijmegen Med Ctr Nijmegen Netherlands
the accurate estimation of predictive uncertainty carries importance in medical scenarios such as lung node segmentation. Unfortunately, most existing works on predictive uncertainty do not return calibrated uncertain... 详细信息
来源: 评论
Evidence Localization for Pathology images Using Weakly Supervised Learning  22nd
Evidence Localization for Pathology Images Using Weakly Supe...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Huang, Yongxiang Chung, Albert C. S. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Lo Kwee Seong Med Image Anal Lab Hong Kong Peoples R China
Despite deep convolutional neural networks boost the performance of image classification and segmentation in digital pathology analysis, they are usually weak in interpretability for clinical applications or require h... 详细信息
来源: 评论
7th international Workshop on Machine Learning in medical Imaging, MLMI 2016 held in conjunction with 19th international conference on medical image computing and computer-assisted intervention, MICCAI 2016
7th International Workshop on Machine Learning in Medical Im...
收藏 引用
7th international Workshop on Machine Learning in medical Imaging, MLMI 2016 held in conjunction with 19th international conference on medical image computing and computer-assisted intervention, MICCAI 2016
the proceedings contain 38 papers. the special focus in this conference is on Machine Learning in medical Imaging. the topics include: Identifying high order brain connectome biomarkers via learning on hypergraph;bila...
来源: 评论
Unsupervised Quality Control of image Segmentation Based on Bayesian Learning  22nd
Unsupervised Quality Control of Image Segmentation Based on ...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Audelan, Benoit Delingette, Herve Univ Cote Azur INRIA Epione Project Team Sophia Antipolis France
Assessing the quality of segmentations on an image database is required as many downstream clinical applications are based on segmentation results. For large databases, this quality assessment becomes tedious for a hu... 详细信息
来源: 评论
Diverse Multiple Prediction on Neuron image Reconstruction  22nd
Diverse Multiple Prediction on Neuron Image Reconstruction
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Ye, Ze Chen, Cong Yuan, Changhe Chen, Chao SUNY Stony Brook Stony Brook NY 11794 USA CUNY New York NY 10021 USA
Neuron reconstruction from anisotropic 3D Electron Microscopy (EM) images is a challenging problem. One often considers an input image as a stack of 2D image slices, and consider both intra and inter slice segments in... 详细信息
来源: 评论
Comparing to learn: Surpassing imagenet pretraining on radiographs by comparing image representations  23rd
Comparing to learn: Surpassing imagenet pretraining on radio...
收藏 引用
23rd international conference on medical image computing and computer-assisted intervention, MICCAI 2020
作者: Zhou, Hong-Yu Yu, Shuang Bian, Cheng Hu, Yifan Ma, Kai Zheng, Yefeng Jarvis Lab Tencent Shenzhen China
In deep learning era, pretrained models play an important role in medical image analysis, in which imageNet pretraining has been widely adopted as the best way. However, it is undeniable that there exists an obvious d... 详细信息
来源: 评论
Learning and exploiting interclass visual correlations for medical image classification  23rd
Learning and exploiting interclass visual correlations for m...
收藏 引用
23rd international conference on medical image computing and computer-assisted intervention, MICCAI 2020
作者: Wei, Dong Cao, Shilei Ma, Kai Zheng, Yefeng Tencent Jarvis Lab Shenzhen China
Deep neural network-based medical image classifications often use "hard" labels for training, where the probability of the correct category is 1 and those of others are 0. However, these hard targets can dri... 详细信息
来源: 评论
image-and-Spatial Transformer Networks for Structure-Guided image Registration  22nd
Image-and-Spatial Transformer Networks for Structure-Guided ...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Lee, Matthew C. H. Oktay, Ozan Schuh, Andreas Schaap, Michiel Glocker, Ben HeartFlow Redwood City CA 94063 USA Imperial Coll London Biomed Image Anal Grp London England
image registration with deep neural networks has become an active field of research and exciting avenue for a long standing problem in medical imaging. the goal is to learn a complex function that maps the appearance ... 详细信息
来源: 评论
PAN: Projective Adversarial Network for medical image Segmentation  22nd
PAN: Projective Adversarial Network for Medical Image Segmen...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Khosravan, Naji Mortazi, Aliasghar Wallace, Michael Bagci, Ulas Mayo Clin Canc Ctr Jacksonville FL 32224 USA Univ Cent Florida Sch Comp Sci Ctr Res Comp Vis CRCV Orlando FL 32816 USA
Adversarial learning has been proven to be effective for capturing long-range and high-level label consistencies in semantic segmentation. Unique to medical imaging, capturing 3D semantics in an effective yet computat... 详细信息
来源: 评论
Assessing Reliability and Challenges of Uncertainty Estimations for medical image Segmentation  22nd
Assessing Reliability and Challenges of Uncertainty Estimati...
收藏 引用
10th international Workshop on Machine Learning in medical Imaging (MLMI) / 22nd international conference on medical image computing and computer-assisted intervention (MICCAI)
作者: Jungo, Alain Reyes, Mauricio Univ Bern Insel Data Sci Ctr Inselspital Univ Hosp Bern Bern Switzerland
Despite the recent improvements in overall accuracy, deep learning systems still exhibit low levels of robustness. Detecting possible failures is critical for a successful clinical integration of these systems, where ... 详细信息
来源: 评论