Reliable remote measuring of flow meters for the petroleum gas industry is proposed in this work. The monitoring of flow rates and the total amount of the fluid flow is collected using a manual process. The main goal ...
详细信息
Reliable remote measuring of flow meters for the petroleum gas industry is proposed in this work. The monitoring of flow rates and the total amount of the fluid flow is collected using a manual process. The main goal of this work is to implement a mechanism that avoids human error and achieves reliable, continuous, and accurate monitoring. We employed the NuFlo Measurement System Model MC-II Flow Analyzer to prototype our monitoring mechanism for measuring the liquid flow and a Crossbow Technology MICA2 mote and MDA300CA Data Acquisition Board to transmit collected data via a wireless sensor network (WSN). The flow analyzer generates a pulse signal whose frequency depends on the flow rate. The mote is used to count the number of pulses and send it to the host computer. An amplifier lets the mote detect the voltage level differences and overcome signal weakness. The host computer stores the data received from the mote into a PostgreSQL database for use in preparing Excel sheets and graphical displays in real time. The flow rate and the total flow amount collected by the host computer match those shown on analyzer. The design and implementation of our prototype serves as a proof of concept of how existing analog sensors used to monitor the flow rate and volume of the oil and water in petroleum production can be integrated with other devices in a WSN.
This paper presents an advanced CMOS imager with concurrent parallel processing for early-vision tasks. The network is arranged in two layers of 32times32 programmable mixed-signal elementary processors with programma...
详细信息
This paper presents an advanced CMOS imager with concurrent parallel processing for early-vision tasks. The network is arranged in two layers of 32times32 programmable mixed-signal elementary processors with programmable linear feedback and control masks and inter-layer connections for continuous-time cellular neural network dynamics. The ratio of the time constants of these layers is user selectable. There are also feedforward connections to a faster third layer, intended to combine of the outputs of the other two in parallel. We have employed a restricted set of weights, trading flexibility for robustness. It results in a more linear multiplier block and, consequently, a significant reduction of irregularities in the propagation of analog waves ought to asymmetric synapses. Also global and local adaptation to illumination conditions, both throughout the scene and from frame to frame, are implemented on-chip, making use of the available focal-plane processing capabilities. The predicted computing power per area and power consumption is amongst the largest reported, what renders this kind of devices as an efficient front-end for portable applications of artificial vision.
暂无评论