咨询与建议

限定检索结果

文献类型

  • 863 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 871 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 626 篇 工学
    • 293 篇 信息与通信工程
    • 239 篇 电气工程
    • 211 篇 测绘科学与技术
    • 202 篇 计算机科学与技术...
    • 56 篇 仪器科学与技术
    • 50 篇 软件工程
    • 35 篇 电子科学与技术(可...
    • 33 篇 航空宇航科学与技...
    • 26 篇 控制科学与工程
    • 22 篇 光学工程
    • 9 篇 土木工程
    • 8 篇 建筑学
    • 7 篇 力学(可授工学、理...
    • 7 篇 化学工程与技术
    • 7 篇 环境科学与工程(可...
    • 6 篇 动力工程及工程热...
    • 6 篇 水利工程
    • 6 篇 生物工程
  • 443 篇 理学
    • 393 篇 物理学
    • 48 篇 数学
    • 15 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 海洋科学
    • 7 篇 生物学
    • 7 篇 系统科学
    • 6 篇 大气科学
  • 270 篇 医学
    • 270 篇 临床医学
  • 17 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
  • 9 篇 农学
    • 6 篇 作物学
  • 2 篇 军事学
  • 1 篇 法学

主题

  • 466 篇 synthetic apertu...
  • 101 篇 sar
  • 100 篇 radar imaging
  • 94 篇 radar
  • 58 篇 synthetic apertu...
  • 55 篇 automatic target...
  • 49 篇 image processing
  • 44 篇 image resolution
  • 41 篇 detection and tr...
  • 34 篇 target detection
  • 33 篇 target recogniti...
  • 32 篇 feature extracti...
  • 28 篇 radar polarimetr...
  • 28 篇 sensors
  • 26 篇 remote sensing
  • 24 篇 image segmentati...
  • 22 篇 imaging
  • 21 篇 speckle
  • 20 篇 machine learning
  • 20 篇 signal processin...

机构

  • 12 篇 ohio state univ ...
  • 12 篇 wright state uni...
  • 12 篇 rensselaer polyt...
  • 11 篇 univ florida dep...
  • 10 篇 wright state uni...
  • 9 篇 air force res la...
  • 8 篇 air force res la...
  • 8 篇 res lab adelphi ...
  • 7 篇 air force res la...
  • 6 篇 sandia natl labs...
  • 6 篇 mit lincoln lab ...
  • 5 篇 univ michigan an...
  • 5 篇 univ massachuset...
  • 5 篇 ohio state univ ...
  • 5 篇 air force res la...
  • 5 篇 naval postgrad s...
  • 4 篇 utah state univ ...
  • 4 篇 rensselaer polyt...
  • 4 篇 duke univ dept e...
  • 4 篇 mit informat & d...

作者

  • 16 篇 yazici birsen
  • 16 篇 zelnio edmund
  • 13 篇 rigling brian d.
  • 13 篇 pepin matthew
  • 12 篇 nguyen l
  • 11 篇 zelnio edmund g.
  • 11 篇 majumder uttam
  • 11 篇 garren david a.
  • 9 篇 li j
  • 9 篇 waldman j
  • 9 篇 nixon we
  • 9 篇 lewis benjamin
  • 9 篇 majumder uttam k...
  • 8 篇 wang ling
  • 8 篇 minardi michael ...
  • 7 篇 dickinson jc
  • 7 篇 ranney k
  • 7 篇 goyette tm
  • 7 篇 minardi michael
  • 7 篇 potter lee c.

语言

  • 861 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"任意字段=Conference on Algorithms for Synthetic Aperture Radar Imagery IX"
871 条 记 录,以下是91-100 订阅
排序:
Accuracy of point scatterer localization across a range of 2D and 3D SAR imaging parameters  28
Accuracy of point scatterer localization across a range of 2...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXVIII
作者: Pepin, Matthew P. USAF Albuquerque NM 87108 USA
synthetic aperture radar (SAR) point scatterers are exploited in SAR imaging to detect known locations and objects, and to estimate and identify their specific parameters. The absolute, relative, and differential loca... 详细信息
来源: 评论
Leveraging synthetic imagery to train deep learning algorithms for the detection of objects of interest in radiant energy imagery  28
Leveraging synthetic imagery to train deep learning algorith...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXVIII
作者: Gonzalez, Megan E. Catlett, Amanda Jabour, Joseph E. Patel, Reena R. Price, Stanton US Army Engineer & Res Dev Ctr 3909 Halls Ferry Rd Vicksburg MS 39180 USA
Radiant energy object detection deep learning algorithms require large training sets with site-specific images, often from locations that are difficult to access, while also remaining diverse enough to encourage a rob... 详细信息
来源: 评论
Remote sensing of polar ice: combining synthetic aperture radar and machine learning for operational navigability  28
Remote sensing of polar ice: combining synthetic aperture ra...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXVIII
作者: Reinisch, Elena C. Ren, Christopher X. Roberts, Andrew Wilson, Cathy Eriksson, Patrick B. Ziemann, Amanda Los Alamos Natl Lab Intelligence & Space Res Div Los Alamos NM 87545 USA Los Alamos Natl Lab Theoret Div Los Alamos NM 87545 USA Los Alamos Natl Lab Earth & Environm Sci Div Los Alamos NM 87545 USA Finnish Meteorol Inst PB 503 FI-00101 Helsinki Finland
Global climate warming is rapidly reducing Arctic sea ice volume and extent. The associated perennial sea ice loss has economic and global security implications associated with Arctic Ocean navigability, since sea ice... 详细信息
来源: 评论
Image Fusion and Quantum Machine Learning for Remote Sensing Applications
Image Fusion and Quantum Machine Learning for Remote Sensing...
收藏 引用
International conference on Information, Intelligence, Systems and Applications (IISA)
作者: Leslie Miller Glen Uehara Andreas Spanias SenSIP Center ECEE Arizona State University Tempe USA
The integration of synthetic aperture radar (SAR) and optical imagery through image fusion techniques is important in refining the accuracy and interpretability of images in remote sensing applications. The current ar... 详细信息
来源: 评论
GCSAR: Small-Object-Enhanced Detection Algorithm Based on Gradient Aggregation and Channel Enhancement for SAR Ship Detection
GCSAR: Small-Object-Enhanced Detection Algorithm Based on Gr...
收藏 引用
Artificial Intelligence Technology (ACAIT), Asian conference on
作者: Kefu Lin Yujuan Han School of Computer Science Shanghai Maritime University Shanghai China
High-resolution synthetic aperture radar (SAR) utilizes pulse compression technology to accurately resolve the distance between targets and enable imaging,the application of detection algorithm in ship identification ... 详细信息
来源: 评论
synthetic aperture radar Ship Detection Network Based on Multi-Scale Feature Enhancement
Synthetic Aperture Radar Ship Detection Network Based on Mul...
收藏 引用
Communication Technology and Information Technology (ICCTIT), International conference on
作者: Zhixian Zhang Lina Tang Yin Bai Siqi Yang Shuo Yang Yu Wang Research and Development Department I China Mobile Chengdu Institute of Research and Development Chengdu China
The paper introduces a ship identification network with SAR imagery, termed Multi-scale Feature enhancement YOLOX (MF-YOLOX), specifically designed to tackle the challenge of poor accuracy in recognizing multi-scale t... 详细信息
来源: 评论
Leveraging Generative Deep Learning Models for Enhanced Change Detection in Heterogeneous Remote Sensing Data
Leveraging Generative Deep Learning Models for Enhanced Chan...
收藏 引用
International conference on Information Fusion
作者: Moslem Ouled Sghaier Melita Hadzagic Jun Ye Yu Sofia Shton Elisa Shahbazian OODA Technologies Inc. Montreal Quebec Canada
In this paper, we introduce an innovative approach for Change Detection (CD) in heterogeneous (multimodal) multi-temporal remote sensing (RS) images employing deep features comparison through the utilization of two ad... 详细信息
来源: 评论
Harnessing Satellite imagery for Effective Flood Detection Using Convolution Neural Network
Harnessing Satellite Imagery for Effective Flood Detection U...
收藏 引用
Intelligent Data Communication Technologies and Internet of Things (IDCIoT), International conference on
作者: Bhakti Ambarkar Aman Singh Piyush Gupta Chetankumar Dhule Rahul Agrawal Nekita Chavhan Morris Department Of DIC G H Raisoni College Of Engineering Nagpur India Department of Data Science G H Raisoni College of Engineering Nagpur India Head of Department of DIC G H Raisoni college of Engineering Nagpur India
Earth Observation has become essential for monitoring geosciences and human activity. With the increasing availability of data, Artificial Intelligence (AI) algorithms have delivered significant advancements in remote... 详细信息
来源: 评论
A Novel Technique to Remove Noise from SAR Images by Equalizing Neighborhood Surrounding Values and Pixel Smoothing
A Novel Technique to Remove Noise from SAR Images by Equaliz...
收藏 引用
Computational Intelligence, Communication Technology and Networking (CICTN), International conference on
作者: Baldivya Mitra Maroti Deshmukh Abhimanyu Kumar Dept. CSE National Institute of Technology Uttarakhand India Dept. CSE National Institute of Technology Patna India
Automatic Target Recognition (ATR) plays a crucial role in military operations to locate actual targets and response immediately. Target recognition is easier in Standard Operating Conditions (SOC) while it becomes ve... 详细信息
来源: 评论
Convolutional Neural Network Combined with Transfer Learning for Damage Assessment with Satellite imagery  2
Convolutional Neural Network Combined with Transfer Learning...
收藏 引用
2022 2nd International conference on Artificial Intelligence, Big Data and algorithms, CAIBDA 2022
作者: Hu, Sijia School of Mechanical Electrical & Information Engineering Shandong University Weihai Shandong Weihai264209 China
Damage assessment is imperative for humanitarian and post-event reconstruction as well as crucial to the relief helpers for resources distribution after a hurricane. Compared to visual inspections and optical and synt... 详细信息
来源: 评论