咨询与建议

限定检索结果

文献类型

  • 862 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 870 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 626 篇 工学
    • 293 篇 信息与通信工程
    • 239 篇 电气工程
    • 211 篇 测绘科学与技术
    • 202 篇 计算机科学与技术...
    • 56 篇 仪器科学与技术
    • 50 篇 软件工程
    • 35 篇 电子科学与技术(可...
    • 33 篇 航空宇航科学与技...
    • 26 篇 控制科学与工程
    • 22 篇 光学工程
    • 9 篇 土木工程
    • 8 篇 建筑学
    • 7 篇 力学(可授工学、理...
    • 7 篇 化学工程与技术
    • 7 篇 环境科学与工程(可...
    • 6 篇 动力工程及工程热...
    • 6 篇 水利工程
    • 6 篇 生物工程
  • 443 篇 理学
    • 393 篇 物理学
    • 48 篇 数学
    • 15 篇 统计学(可授理学、...
    • 12 篇 化学
    • 9 篇 海洋科学
    • 7 篇 生物学
    • 7 篇 系统科学
    • 6 篇 大气科学
  • 270 篇 医学
    • 270 篇 临床医学
  • 17 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
  • 9 篇 农学
    • 6 篇 作物学
  • 2 篇 军事学
  • 1 篇 法学

主题

  • 465 篇 synthetic apertu...
  • 101 篇 sar
  • 100 篇 radar imaging
  • 94 篇 radar
  • 58 篇 synthetic apertu...
  • 55 篇 automatic target...
  • 49 篇 image processing
  • 43 篇 image resolution
  • 41 篇 detection and tr...
  • 34 篇 target detection
  • 33 篇 target recogniti...
  • 31 篇 feature extracti...
  • 28 篇 sensors
  • 27 篇 radar polarimetr...
  • 26 篇 remote sensing
  • 24 篇 image segmentati...
  • 22 篇 imaging
  • 21 篇 speckle
  • 20 篇 machine learning
  • 20 篇 signal processin...

机构

  • 12 篇 ohio state univ ...
  • 12 篇 wright state uni...
  • 12 篇 rensselaer polyt...
  • 11 篇 univ florida dep...
  • 10 篇 wright state uni...
  • 9 篇 air force res la...
  • 8 篇 air force res la...
  • 8 篇 res lab adelphi ...
  • 7 篇 air force res la...
  • 6 篇 sandia natl labs...
  • 6 篇 mit lincoln lab ...
  • 5 篇 univ michigan an...
  • 5 篇 univ massachuset...
  • 5 篇 ohio state univ ...
  • 5 篇 air force res la...
  • 5 篇 naval postgrad s...
  • 4 篇 utah state univ ...
  • 4 篇 rensselaer polyt...
  • 4 篇 duke univ dept e...
  • 4 篇 mit informat & d...

作者

  • 16 篇 yazici birsen
  • 16 篇 zelnio edmund
  • 13 篇 rigling brian d.
  • 13 篇 pepin matthew
  • 12 篇 nguyen l
  • 11 篇 zelnio edmund g.
  • 11 篇 majumder uttam
  • 11 篇 garren david a.
  • 9 篇 li j
  • 9 篇 waldman j
  • 9 篇 nixon we
  • 9 篇 lewis benjamin
  • 9 篇 majumder uttam k...
  • 8 篇 wang ling
  • 8 篇 minardi michael ...
  • 7 篇 dickinson jc
  • 7 篇 ranney k
  • 7 篇 goyette tm
  • 7 篇 minardi michael
  • 7 篇 potter lee c.

语言

  • 863 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"任意字段=Conference on Algorithms for Synthetic Aperture Radar Imagery IX"
870 条 记 录,以下是31-40 订阅
排序:
Bridging the synthetic to measured SAR gap by splitting style and content  30
Bridging the synthetic to measured SAR gap by splitting styl...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Parks, Caleb Swan, Matthew Gauch, Susan Zhan, Justin Univ Arkansas Fayetteville AR 72701 USA Univ Cincinnati Cincinnati OH 45221 USA
Correctly classifying SAR imagery is a critical task in many applications;however, unseen samples may be difficult for machine learning models to classify. Challenges include sensitivity to slight changes in target al... 详细信息
来源: 评论
3D SAR image reconstruction of ground vehicles using sparse multiple flight path data  30
3D SAR image reconstruction of ground vehicles using sparse ...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Sotirelis, Paul Gilmore, Sean Air Force Res Lab 2241 Avion Circle Wright Patterson AFB OH 45433 USA Analyt Designs Inc 245 East Gay St Columbus OH 43215 USA
We present an exploration of collection geometries for producing three-dimensionally (3D) focused synthetic aperture radar (SAR) derived point clouds. We consider collection geometries that can be produced by a series... 详细信息
来源: 评论
Hybrid generative and contrastive approaches for the synthetic-measured gap  31
Hybrid generative and contrastive approaches for the synthet...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXXI
作者: Zaunegger, Jackson S. Zelnio, Edmund Penn State Univ University Pk PA 16802 USA Air Force Res Lab Wright Patterson AFB OH USA
When performing automatic target recognition it is common to train models using synthetically generated data. This is because synthetically generated data is plentiful, and cheap to produce. Once trained on synthetic ... 详细信息
来源: 评论
Three-dimensional spherical SAR template and feature recognition  31
Three-dimensional spherical SAR template and feature recogni...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXXI
作者: Pepin, Matthew USAF Albuquerque NM 80840 USA
The high sample density and rich feature set of 3D SAR makes high performance target recognition possible even in noisy environments. The recognition performance with 3D imaging is examined for full target templates a... 详细信息
来源: 评论
Graph Neural Network Based SAR Automatic Target Recognition with Human-in-the-loop  30
Graph Neural Network Based SAR Automatic Target Recognition ...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Zhang, Bingyi Wijeratne, Sasindu Kannan, Rajgopal Prasanna, Viktor Busart, Carl Univ Southern Calif Los Angeles CA 90007 USA DEVCOM US Army Res Lab Adelphi MD USA
synthetic aperture radar (SAR) automatic target recognition (ATR) is a key technique for SAR image analysis in military activities. Accurate SAR ATR can promote command and decision-making. In this work, we propose a ... 详细信息
来源: 评论
A Sidelobe-Aware Semi-Deformable Convolutional Ship Detection Network for synthetic aperture radar imagery  7th
A Sidelobe-Aware Semi-Deformable Convolutional Ship Detectio...
收藏 引用
7th Chinese conference on Pattern Recognition and Computer Vision
作者: Luo, Hao Lin, Xianming Xiamen Univ Minist Educ Key Lab Multimedia Trusted Percept & Efficient Co Xiamen 361005 Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen 361005 Peoples R China Nanjing Marine Radar Inst Nanjing 211153 Peoples R China
This paper focus on SAR ship detection, which has been widely used in tasks such as marine traffic, fisheries management, battlefield posture assessment and military target reconnaissance. One popular solution is to u... 详细信息
来源: 评论
Novel Batch Active Learning Approach and Its Application to synthetic aperture radar Datasets  30
Novel Batch Active Learning Approach and Its Application to ...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Chapman, James Chen, Bohan Tan, Zheng Calder, Jeff Miller, Kevin Bertozzi, Andrea L. Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
Active learning improves the performance of machine learning methods by judiciously selecting a limited number of unlabeled data points to query for labels, with the aim of maximally improving the underlying classifie... 详细信息
来源: 评论
Detecting Ship Wake from Complex Backgrounds in synthetic aperture radar (SAR) imagery
Detecting Ship Wake from Complex Backgrounds in Synthetic Ap...
收藏 引用
2024 International conference on Intelligent Computing and Sustainable Innovations in Technology, IC-SIT 2024
作者: Mathias, Ajisha Pradeepthi, Gubba Vivek, Ongole Kishore, Kummara R&D Institute of Science and Technology Vel Tech Rangarajan Dr.Sagunthala Department of ECE Chennai India
Ship wake identification is crucial for analyzing ocean surface synthetic aperture radar (SAR) pictures because ship wakes typically include important vessel information. A significant proportion of detection algorith... 详细信息
来源: 评论
Utilizing Contrastive Learning for Graph-Based Active Learning of SAR Data  30
Utilizing Contrastive Learning for Graph-Based Active Learni...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Brown, Jason O'Neill, Riley Calder, Jeff Bertozzi, Andrea L. Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging image classification problem due to the difficulty in acquiring the large labeled training sets required for conventional deep lea... 详细信息
来源: 评论
Deep Semi-supervised Label Propagation for SAR Image Classification  30
Deep Semi-supervised Label Propagation for SAR Image Classif...
收藏 引用
conference on algorithms for synthetic aperture radar imagery XXX
作者: Enwright, Joshua Hardiman-Mostow, Harris Calder, Jeff Bertozzi, Andrea Univ Calif Los Angeles Dept Math 520 Portola Plaza Los Angeles CA 90095 USA Univ Minnesota Sch Math 538 Vincent Hall206 Church St SE Minneapolis MN 55455 USA
Automatic target recognition with synthetic aperture radar (SAR) data is a challenging problem due to the complexity of the images and the difficulty in acquiring labels. Recent work(1) used a convolutional variationa... 详细信息
来源: 评论