咨询与建议

限定检索结果

文献类型

  • 18,869 篇 会议
  • 1,421 篇 期刊文献
  • 713 册 图书
  • 59 篇 学位论文

馆藏范围

  • 21,063 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 12,400 篇 工学
    • 9,658 篇 计算机科学与技术...
    • 4,668 篇 软件工程
    • 3,236 篇 电气工程
    • 2,913 篇 信息与通信工程
    • 1,590 篇 生物工程
    • 1,491 篇 控制科学与工程
    • 1,212 篇 光学工程
    • 1,145 篇 生物医学工程(可授...
    • 722 篇 电子科学与技术(可...
    • 562 篇 机械工程
    • 450 篇 仪器科学与技术
    • 302 篇 化学工程与技术
    • 300 篇 材料科学与工程(可...
    • 273 篇 网络空间安全
    • 254 篇 安全科学与工程
    • 230 篇 动力工程及工程热...
    • 209 篇 交通运输工程
  • 4,828 篇 理学
    • 2,343 篇 物理学
    • 1,768 篇 生物学
    • 1,469 篇 数学
    • 456 篇 统计学(可授理学、...
    • 404 篇 化学
    • 245 篇 系统科学
  • 1,846 篇 医学
    • 1,566 篇 临床医学
    • 600 篇 基础医学(可授医学...
    • 363 篇 药学(可授医学、理...
  • 1,618 篇 管理学
    • 986 篇 管理科学与工程(可...
    • 727 篇 图书情报与档案管...
    • 240 篇 工商管理
  • 221 篇 农学
  • 203 篇 教育学
    • 197 篇 教育学
  • 149 篇 法学
  • 62 篇 经济学
  • 48 篇 文学
  • 25 篇 军事学
  • 13 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 3,539 篇 neural networks
  • 2,904 篇 artificial neura...
  • 2,498 篇 convolutional ne...
  • 1,891 篇 deep learning
  • 1,590 篇 feature extracti...
  • 1,516 篇 image processing
  • 1,441 篇 training
  • 1,355 篇 artificial intel...
  • 962 篇 accuracy
  • 925 篇 image segmentati...
  • 719 篇 machine learning
  • 620 篇 deep neural netw...
  • 604 篇 neurons
  • 590 篇 computational mo...
  • 461 篇 image recognitio...
  • 460 篇 image classifica...
  • 420 篇 computer archite...
  • 418 篇 computer vision
  • 404 篇 signal processin...
  • 392 篇 object detection

机构

  • 54 篇 chitkara univers...
  • 27 篇 univ chinese aca...
  • 23 篇 tsinghua univers...
  • 20 篇 school of comput...
  • 19 篇 university of el...
  • 18 篇 university of sc...
  • 18 篇 poznan univ life...
  • 18 篇 university of ch...
  • 17 篇 nanyang technolo...
  • 16 篇 xidian univ sch ...
  • 15 篇 school of comput...
  • 15 篇 school of comput...
  • 14 篇 hendisli&#x011f
  • 14 篇 school of electr...
  • 14 篇 shanghai jiao to...
  • 14 篇 tsinghua univ pe...
  • 13 篇 tongji universit...
  • 12 篇 shanghai jiao to...
  • 12 篇 lovely professio...
  • 12 篇 the islamic univ...

作者

  • 19 篇 de-shuang huang
  • 16 篇 ryszard tadeusie...
  • 16 篇 marcin korytkows...
  • 15 篇 jacek m. zurada
  • 11 篇 madani kurosh
  • 11 篇 li yang
  • 11 篇 liu yang
  • 11 篇 liu ying
  • 11 篇 ngoc thanh nguye...
  • 10 篇 wang lei
  • 10 篇 li xin
  • 10 篇 wang jing
  • 10 篇 jun wang
  • 9 篇 haijun zhang
  • 9 篇 gill kanwarparta...
  • 9 篇 tianyong hao
  • 9 篇 jun zhang
  • 9 篇 li li
  • 9 篇 shuzhi sam ge
  • 9 篇 liu xin

语言

  • 18,607 篇 英文
  • 2,123 篇 其他
  • 263 篇 中文
  • 174 篇 土耳其文
  • 7 篇 德文
  • 4 篇 法文
  • 3 篇 西班牙文
  • 3 篇 俄文
  • 2 篇 葡萄牙文
  • 1 篇 日文
检索条件"任意字段=Conference on Applications of Artificial Neural Networks in Image Processing"
21063 条 记 录,以下是301-310 订阅
排序:
Design and Implementation of image Description Model Using artificial Intelligence Based Techniques  3rd
Design and Implementation of Image Description Model Using A...
收藏 引用
3rd International conference on Computational Electronics for Wireless Communications, ICCWC 2023
作者: Ingale, Sumedh Bamnote, G.R. Prof. Ram Meghe Institute of Technology & Research Badnera Amravati India
The process that produces written descriptions that effectively represent the meaning and context of an image is known as image captioning. To integrate visual and textual data, it needs to blend computer vision and n... 详细信息
来源: 评论
Analysis Of Traffic Sign Recognition Using artificial neural Network Algorithm Compared With Accuracy Of Recurrent neural networks  9
Analysis Of Traffic Sign Recognition Using Artificial Neural...
收藏 引用
9th International conference on Applying New Technology in Green Buildings, ATiGB 2024
作者: Amos, P. Narendran, S. Keerthivasan, M. Institute of Electronics and Communication Engineering Saveetha School of Engineering Simats Department of Nanotechnology Chennai India Institute of Electronics and Communication Engineering Saveetha School of Engineering Simats Chennai India
The purpose of this work is to improve Traffic sign recognition using machine learning to improve comprehension of traffic signs. The Novel artificial neural Network (ANN) method is compared with Recurrent neural Netw... 详细信息
来源: 评论
Operator-Learning-Inspired Modeling of neural Ordinary Differential Equations  38
Operator-Learning-Inspired Modeling of Neural Ordinary Diffe...
收藏 引用
38th AAAI conference on artificial Intelligence (AAAI) / 36th conference on Innovative applications of artificial Intelligence / 14th Symposium on Educational Advances in artificial Intelligence
作者: Cho, Woojin Cho, Seunghyeon Jin, Hyundong Jeon, Jinsung Lee, Kookjin Hong, Sanghyun Lee, Dongeun Choi, Jonghyun Park, Noseong Yonsei Univ Seoul South Korea Arizona State Univ Tempe AZ USA Oregon State Univ Corvallis OR USA Texas A&M Univ Commerce College Stn TX USA
neural ordinary differential equations (NODEs), one of the most influential works of the differential equation-based deep learning, are to continuously generalize residual networks and opened a new field. They are cur... 详细信息
来源: 评论
A survey of the vision transformers and their CNN-transformer based variants
收藏 引用
artificial INTELLIGENCE REVIEW 2023年 第SUPPL3期56卷 S2917-S2970页
作者: Khan, Asifullah Raufu, Zunaira Sohail, Anabia Khan, Abdul Rehman Asif, Hifsa Asif, Aqsa Farooq, Umair Pakistan Inst Engn & Appl Sci Dept Comp & Informat Sci Pattern Recognit Lab Islamabad 45650 Pakistan Pakistan Inst Engn & Appl Sci PIEAS Artificial Intelligence Ctr PAIC Islamabad 45650 Pakistan Pakistan Inst Engn & Appl Sci Ctr Math Sci Islamabad 45650 Pakistan Khalifa Univ Sci & Technol Dept Elect Engn & Comp Sci Abu Dhabi U Arab Emirates Air Univ E-9 Islamabad 44230 Pakistan
Vision transformers have become popular as a possible substitute to convolutional neural networks (CNNs) for a variety of computer vision applications. These transformers, with their ability to focus on global relatio... 详细信息
来源: 评论
Design Space Exploration of CNN Accelerators based on GSA Algorithm
Design Space Exploration of CNN Accelerators based on GSA Al...
收藏 引用
9th International conference on Signal and image processing (ICSIP)
作者: Xie, Zheren Dai, Kui Wu, Zhilin Wang, Jinyue Lu, Xin Liu, Shuanglong Hunan Normal Univ Key Lab Low Dimens Quantum Struct & Quantum Contr Key Lab Phys & Devices Postmoore Era Coll Hunan Prov Changsha Peoples R China
Convolutional neural networks (CNNs) exhibit exceptional performance within the image processing domain. The acceleration of convolutions for CNNs has consistently represented a focal point within machine learning har... 详细信息
来源: 评论
Vector-Valued Hopfield neural networks and Distributed Synapse Based Convolutional and Linear Time-Variant Associative Memories
收藏 引用
neural processing LETTERS 2023年 第4期55卷 4163-4182页
作者: Garimella, Rama Murthy Valle, Marcos Eduardo Vieira, Guilherme Rayala, Anil Munugoti, Dileep Mahindra Univ Ecole Cent Sch Engn Dept Comp Sci Hyderabad India Univ Estadual Campinas Campinas SP Brazil Int Inst Informat Technol Hyderabad India Indian Inst Technol Gauhati India
The Hopfield network is an example of an artificial neural network used to implement associative memories. A binary digit represents the neuron's state of a traditional Hopfield neural network. Inspired by the hum... 详细信息
来源: 评论
Bayesian Hierarchical Convolutional neural networks  5
Bayesian Hierarchical Convolutional Neural Networks
收藏 引用
conference on artificial Intelligence and Machine Learning for Multi-Domain Operations applications V
作者: Bensen, Alexis Kahana, Adam Woods, Zerotti Johns Hopkins Univ Appl Phys Lab 11100 Johns Hopkins Rd Laurel MD 20723 USA
The Hierarchical Bayesian Convolutional neural Network (HCNN) is a machine learning algorithm that attempts to use the natural hierarchical structure of data. HCNN has demonstrated gains in robustness, accuracy, and r... 详细信息
来源: 评论
Scale-preserving automatic concept extraction (SPACE)
收藏 引用
MACHINE LEARNING 2023年 第11期112卷 4495-4525页
作者: Posada-Moreno, Andres Felipe Kreiskoether, Lukas Glander, Tassilo Trimpe, Sebastian Rhein Westfal TH Aachen Inst Data Sci Mech Engn DSME Aachen Germany Deevio GmbH Berlin Germany
Convolutional neural networks (CNN) have become a common choice for industrial quality control, as well as other critical applications in the Industry 4.0. When these CNNs behave in ways unexpected to human users or d... 详细信息
来源: 评论
A Hybrid Approach for Underwater image Enhancement using CNN and GAN
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND applications 2023年 第6期14卷 742-748页
作者: Menon, Aparna Aarthi, R. Amrita Vishwa Vidyapeetham Amrita Sch Comp Dept Comp Sci & Engn Coimbatore India
Underwater image-capturing technology has advanced over the years, and varieties of artificial intelligence -based applications have been developed on digital and synthetic images. The low-quality and low-resolution u... 详细信息
来源: 评论
Single image Dehazing via Multi-Scale Large Kernel Convolutional neural networks
Single Image Dehazing via Multi-Scale Large Kernel Convoluti...
收藏 引用
International Joint conference on neural networks (IJCNN)
作者: Li, Minghui Liu, Wei Kang, Zhiguo Huang, Xiaoyu Wuhan Inst Technol Hubei Key Lab Intelligent Robot Wuhan Peoples R China
Large-kernel convolutional neural networks (CNNs) have recently achieved remarkable performance comparable to Visual Transformers(ViTs) in high-level vision tasks. However, there are two critical drawbacks hindering i... 详细信息
来源: 评论