咨询与建议

限定检索结果

文献类型

  • 575 篇 会议
  • 15 册 图书
  • 4 篇 期刊文献

馆藏范围

  • 594 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 工学
    • 454 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 85 篇 电气工程
    • 45 篇 信息与通信工程
    • 30 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 7 篇 生物医学工程(可授...
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 153 篇 理学
    • 113 篇 物理学
    • 23 篇 数学
    • 15 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
  • 40 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 15 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 14 篇 教育学
    • 14 篇 教育学
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学
  • 4 篇 军事学

主题

  • 144 篇 machine learning
  • 105 篇 artificial intel...
  • 65 篇 deep learning
  • 28 篇 adversarial mach...
  • 24 篇 reinforcement le...
  • 16 篇 object detection
  • 15 篇 learning systems
  • 14 篇 neural networks
  • 14 篇 federated learni...
  • 13 篇 computer vision
  • 12 篇 cybersecurity
  • 12 篇 security
  • 12 篇 accuracy
  • 12 篇 machine learning...
  • 12 篇 training
  • 11 篇 computer applica...
  • 10 篇 multi-domain ope...
  • 9 篇 ai
  • 9 篇 explainable arti...
  • 9 篇 unsupervised lea...

机构

  • 6 篇 marwadi universi...
  • 6 篇 national univers...
  • 5 篇 us army engineer...
  • 5 篇 us army res lab ...
  • 4 篇 college of compu...
  • 4 篇 siemens corporat...
  • 4 篇 univ maryland co...
  • 4 篇 carnegie mellon ...
  • 4 篇 foundation for r...
  • 3 篇 mcmaster univ 12...
  • 3 篇 korea univ dept ...
  • 3 篇 us mil acad army...
  • 3 篇 ibm tj watson re...
  • 2 篇 johns hopkins un...
  • 2 篇 penn state univ ...
  • 2 篇 the high school ...
  • 2 篇 howard univ wash...
  • 2 篇 wroclaw universi...
  • 2 篇 univ southern ca...
  • 2 篇 shanghai ai lab ...

作者

  • 8 篇 rawat danda b.
  • 6 篇 divyakant meva
  • 6 篇 kalpesh popat
  • 6 篇 sunil bajeja
  • 6 篇 pankaj mudholkar
  • 6 篇 sridaran rajagop...
  • 4 篇 surucu onur
  • 4 篇 giuliano alessan...
  • 4 篇 alsadi naseem
  • 4 篇 helmut degen
  • 4 篇 hilal waleed
  • 4 篇 stavroula ntoa
  • 4 篇 raglin adrienne
  • 4 篇 asher derrik e.
  • 4 篇 yawney john
  • 4 篇 markowitz jared
  • 3 篇 bastian nathanie...
  • 3 篇 schutte klamer
  • 3 篇 kwak heon-gyu
  • 3 篇 price stanton r.

语言

  • 564 篇 英文
  • 30 篇 其他
  • 2 篇 中文
检索条件"任意字段=Conference on Artificial Intelligence and Machine Learning in Defense Applications IV"
594 条 记 录,以下是1-10 订阅
排序:
artificial intelligence and machine learning in defense applications iv
Artificial Intelligence and Machine Learning in Defense Appl...
收藏 引用
artificial intelligence and machine learning in defense applications iv 2022
The proceedings contain 18 papers. The topics discussed include: dynamic-automatic pipelines for finding topic-specific information clusters using NLP methods in connection with a model-driven approach;a smart embedde...
来源: 评论
Simplicity Bias in Overparameterized machine learning  38
Simplicity Bias in Overparameterized Machine Learning
收藏 引用
38th AAAI conference on artificial intelligence (AAAI) / 36th conference on Innovative applications of artificial intelligence / 14th Symposium on Educational Advances in artificial intelligence
作者: Berchenko, Yakir Ben Gurion Univ Negev Dept Ind Engn & Management POB 653 IL-84105 Beer Sheva Israel
A thorough theoretical understanding of the surprising generalization ability of deep networks (and other overparameterized models) is still lacking. Here we demonstrate that simplicity bias is a major phenomenon to b... 详细信息
来源: 评论
Optimal Attack and defense for Reinforcement learning  38
Optimal Attack and Defense for Reinforcement Learning
收藏 引用
38th AAAI conference on artificial intelligence (AAAI) / 36th conference on Innovative applications of artificial intelligence / 14th Symposium on Educational Advances in artificial intelligence
作者: McMahan, Jeremy Wu, Young Zhu, Xiaojin Xie, Qiaomin Univ Wisconsin Madison WI 53706 USA
To ensure the usefulness of Reinforcement learning (RL) in real systems, it is crucial to ensure they are robust to noise and adversarial attacks. In adversarial RL, an external attacker has the power to manipulate th... 详细信息
来源: 评论
Constrained deep reinforcement learning for maritime platform defense  6
Constrained deep reinforcement learning for maritime platfor...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications VI
作者: Markowitz, Jared Johns Hopkins Univ Appl Phys Lab Laurel MD 20723 USA
We present a method for maritime platform defense using constrained deep reinforcement learning (DRL), showing how competing desires to reliably defend a fleet and conserve inventory may be managed through a dual opti... 详细信息
来源: 评论
SAME: Sample Reconstruction against Model Extraction Attacks  38
SAME: Sample Reconstruction against Model Extraction Attacks
收藏 引用
38th AAAI conference on artificial intelligence (AAAI) / 36th conference on Innovative applications of artificial intelligence / 14th Symposium on Educational Advances in artificial intelligence
作者: Xie, Yi Zhang, Jie Zhao, Shiqian Zhang, Tianwei Chen, Xiaofeng Xidian Univ Xian Peoples R China Nanyang Technol Univ Singapore Singapore
While deep learning models have shown significant performance across various domains, their deployment needs extensive resources and advanced computing infrastructure. As a solution, machine learning as a Service (MLa... 详细信息
来源: 评论
Joint Human and Autonomy Teaming for defense: Status, Challenges, and Perspectives  5
Joint Human and Autonomy Teaming for Defense: Status, Challe...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications V
作者: El Alami, Hassan Nwosu, Mary Rawat, Danda B. Howard Univ Washington DC 20059 USA
Human and Autonomy Teaming (HAT) involves humans, artificial intelligence and machine learning (AI/ML), and autonomous systems (AS) working together to enhance performance and efficiency across a variety of fields. Th... 详细信息
来源: 评论
Efficient Fine-Grained Automatic Target Recognition through Active learning for defense applications  6
Efficient Fine-Grained Automatic Target Recognition through ...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications VI
作者: Thorp, Claire A. Sisti, Sean P. Browne, Lesrene A. Schwartz, Casey Inkawhich, Nathan Bennette, Walter Air Force Res Lab Informat Directorate Rome NY 13441 USA Northeastern Univ Boston MA USA
Out of distribution (OOD) detection has shown immense promise to enable Automatic Target Recognition models for defense applications. However, many defense applications have constraints that make current best practice... 详细信息
来源: 评论
Responsible artificial intelligence and Bias Mitigation in Deep learning Systems  27
Responsible Artificial Intelligence and Bias Mitigation in D...
收藏 引用
27th International conference on Information Visualisation (iv) / 19th International conference Computer Graphics, Imaging and Visualization (CGiv)
作者: Gavrilova, Marina L. Univ Calgary Comp Sci Dept Calgary AB Canada
Responsible, ethical and trustworthy decision making powered by the new generation of artificial intelligence (AI) and deep learning (DL) recently emerged as one of the key societal challenges. The tutorial discusses ... 详细信息
来源: 评论
The Prediction Management Framework: Ethical, Governable, and Interpretable Deployment of artificial intelligence/machine learning Systems  4
The Prediction Management Framework: Ethical, Governable, an...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications iv
作者: Grahn, Daniel Richey, Melonie Altamira 8201 Greensboro Dr St 800 Mclean VA 22102 USA
As defense organizations integrate artificial intelligence (AI) into evermore critical operations, especially those near the tactical edge with real-time decision making, the necessity of a standardized, robust framew... 详细信息
来源: 评论
learning Behavior of Offline Reinforcement learning Agents  6
Learning Behavior of Offline Reinforcement Learning Agents
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications VI
作者: Shukla, Indu Dozier, Haley. R. Henslee, Althea. C. US Army Engn Res & Dev Ctr 3909 Halls Ferry Rd Vicksburg MS 39180 USA
Reinforcement learning (RL) agents offer significant value for military applications by effectively navigating complex, dynamic environments typical of mission engineering and operational analysis. Once trained, these... 详细信息
来源: 评论