咨询与建议

限定检索结果

文献类型

  • 575 篇 会议
  • 15 册 图书
  • 4 篇 期刊文献

馆藏范围

  • 594 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 工学
    • 454 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 85 篇 电气工程
    • 45 篇 信息与通信工程
    • 30 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 7 篇 生物医学工程(可授...
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 153 篇 理学
    • 113 篇 物理学
    • 23 篇 数学
    • 15 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
  • 40 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 15 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 14 篇 教育学
    • 14 篇 教育学
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学
  • 4 篇 军事学

主题

  • 144 篇 machine learning
  • 105 篇 artificial intel...
  • 65 篇 deep learning
  • 28 篇 adversarial mach...
  • 24 篇 reinforcement le...
  • 16 篇 object detection
  • 15 篇 learning systems
  • 14 篇 neural networks
  • 14 篇 federated learni...
  • 13 篇 computer vision
  • 12 篇 cybersecurity
  • 12 篇 security
  • 12 篇 accuracy
  • 12 篇 machine learning...
  • 12 篇 training
  • 11 篇 computer applica...
  • 10 篇 multi-domain ope...
  • 9 篇 ai
  • 9 篇 explainable arti...
  • 9 篇 unsupervised lea...

机构

  • 6 篇 marwadi universi...
  • 6 篇 national univers...
  • 5 篇 us army engineer...
  • 5 篇 us army res lab ...
  • 4 篇 college of compu...
  • 4 篇 siemens corporat...
  • 4 篇 univ maryland co...
  • 4 篇 carnegie mellon ...
  • 4 篇 foundation for r...
  • 3 篇 mcmaster univ 12...
  • 3 篇 korea univ dept ...
  • 3 篇 us mil acad army...
  • 3 篇 ibm tj watson re...
  • 2 篇 johns hopkins un...
  • 2 篇 penn state univ ...
  • 2 篇 the high school ...
  • 2 篇 howard univ wash...
  • 2 篇 wroclaw universi...
  • 2 篇 univ southern ca...
  • 2 篇 shanghai ai lab ...

作者

  • 8 篇 rawat danda b.
  • 6 篇 divyakant meva
  • 6 篇 kalpesh popat
  • 6 篇 sunil bajeja
  • 6 篇 pankaj mudholkar
  • 6 篇 sridaran rajagop...
  • 4 篇 surucu onur
  • 4 篇 giuliano alessan...
  • 4 篇 alsadi naseem
  • 4 篇 helmut degen
  • 4 篇 hilal waleed
  • 4 篇 stavroula ntoa
  • 4 篇 raglin adrienne
  • 4 篇 asher derrik e.
  • 4 篇 yawney john
  • 4 篇 markowitz jared
  • 3 篇 bastian nathanie...
  • 3 篇 schutte klamer
  • 3 篇 kwak heon-gyu
  • 3 篇 price stanton r.

语言

  • 564 篇 英文
  • 30 篇 其他
  • 2 篇 中文
检索条件"任意字段=Conference on Artificial Intelligence and Machine Learning in Defense Applications IV"
594 条 记 录,以下是121-130 订阅
排序:
On the Distributional Convergence of Temporal Difference learning
On the Distributional Convergence of Temporal Difference Lea...
收藏 引用
5th International Workshop on learning with Imbalanced Domains - Theory and applications / European conference on machine learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Dai, Jie Chen, Xuguang Natl Univ Def Technol Coll Comp Changsha Peoples R China
Temporal Difference (TD) learning is one of the most simple but efficient algorithms for policy evaluation in reinforcement learning. Although the finite-time convergence results of the TD algorithm are abundant now, ... 详细信息
来源: 评论
Deep Sleep Recognition Based on CNNs and Data Augmentation  20th
Deep Sleep Recognition Based on CNNs and Data Augmentation
收藏 引用
20th International conference on artificial intelligence applications and Innovations (AIAI)
作者: Chen, Ruixuan Sui, Linfeng Xia, Mo Cao, Jianting Saitama Inst Technol Grad Sch Engn Fukaya Japan RIKEN Ctr Adv Intelligence Project AIP Tokyo Japan
Deep sleep is a key part of the sleep cycle and plays a crucial role in the daily physical recovery process. Due to the complexity and lengthy process of collecting sleep EEG data in real life, which can also pose unn... 详细信息
来源: 评论
Lifelong learning for Robust AI Systems  4
Lifelong Learning for Robust AI Systems
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications iv
作者: Vallabha, Gautam K. Markowitz, Jared Johns Hopkins Univ Appl Phys Lab 11100 Johns Hopkins Rd Laurel MD 20723 USA
Existing artificial intelligence (AI) agents are most successful on narrow, well-defined tasks, where training data are plentiful, well-labeled, and match the deployment scenarios. It is also possible to train an AI a... 详细信息
来源: 评论
Unsupervised Salient Patch Selection for Data-Efficient Reinforcement learning
Unsupervised Salient Patch Selection for Data-Efficient Rein...
收藏 引用
5th International Workshop on learning with Imbalanced Domains - Theory and applications / European conference on machine learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
作者: Jiang, Zhaohui Weng, Paul Shanghai Jiao Tong Univ UM SJTU Joint Inst Shanghai Peoples R China
To improve the sample efficiency of vision-based deep reinforcement learning (RL), we propose a novel method, called SPIRL, to automatically extract important patches from input images. Following Masked Auto-Encoders,... 详细信息
来源: 评论
Archangel Dataset: UAV-based Imagery with Position and Pose Metadata  4
Archangel Dataset: UAV-based Imagery with Position and Pose ...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications iv
作者: Lee, Yaesop Lee, Eung-Joo Conover, Damon M. Shen, Yi-Ting Kwon, Heesung Bhattacharyya, Shuvra S. Hill, Jason Evensen, Kenneth Leong, G. Jeremy Univ Maryland ECE Dept College Pk MD 20742 USA Univ Maryland UMIACS College Pk MD 20742 USA MGH Dept Radiol CAMCA Boston MA USA Harvard Med Sch Boston MA 02115 USA DEVCOM Army Res Lab ARL Adelphi MD USA Def Threat Reduct Agcy DTRA Ft Belvoir VA USA
Object detection on imagery captured onboard aerial platforms involves different challenges than in ground-to-ground object detection. For example, images captured from UAVs with varying altitude and view angles prese... 详细信息
来源: 评论
Sequential Underspecified Instrument Selection for Cause-Effect Estimation  40
Sequential Underspecified Instrument Selection for Cause-Eff...
收藏 引用
40th International conference on machine learning
作者: Ailer, Elisabeth Hartford, Jason Kilbertus, Niki Helmholtz Munich HelmholtzAI Munich Germany Tech Univ Munich Sch Comp Informat & Technol Munich Germany MILA Quebec Artificial Intelligence Inst Montreal PQ Canada Recursion Montreal PQ Canada Munich Ctr Machine Learning Munich Germany
Instrumental variable (iv) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affec... 详细信息
来源: 评论
artificial intelligence Meets Tactical Autonomy: Challenges and Perspectives  4
Artificial Intelligence Meets Tactical Autonomy: Challenges ...
收藏 引用
IEEE 4th International conference on Cognitive machine intelligence (CogMI)
作者: Rawat, Danda B. Howard Univ Dept Elect Engn & Comp Sci EECS DoD Ctr Excellence Artificial Intelligence & Mach Washington DC 20059 USA
artificial intelligence (AI) enabled systems have shown tremendous impact in our national defense and in our society due to recent advances in artificial neural networks, deep learning, machine learning, and Internet ... 详细信息
来源: 评论
Computer network information security monitoring system  2
Computer network information security monitoring system
收藏 引用
2nd International conference on Big Data, Computational intelligence, and applications, BDCIA 2024
作者: Lin, Hongkai Wuhan Business University Hubei Wuhan430056 China
Although traditional protection methods can improve the security of the network to a certain extent, its effect is often limited in the face of complex network environment and various attacks. Therefore, it is an impo... 详细信息
来源: 评论
Integrating AI with Lean Manufacturing in the Context of Industry 4.0/5.0: Current Trends and applications  43rd
Integrating AI with Lean Manufacturing in the Context of Ind...
收藏 引用
43rd IFIP WG 5.7 International conference on Advances in Production Management Systems (APMS)
作者: Boursali, Aze-Eddine Benderbal, Hichem Haddou Souier, Mehdi Higher Sch Appl Sci Tilimsen Algeria Aix Marseille Univ Univ Toulon CNRS Marseille France Univ Tlemcen Mfg Engn Lab Tlemcen MELT Tilimsen Algeria
This article presents an examination of the integration of artificial intelligence (AI) within lean manufacturing processes across the transformative phases of Industry 4.0 and Industry 5.0. The study focuses on how A... 详细信息
来源: 评论
Federated learning of Models Pre-Trained on Different Features with Consensus Graphs  39
Federated Learning of Models Pre-Trained on Different Featur...
收藏 引用
39th conference on Uncertainty in artificial intelligence (UAI)
作者: Ma, Tengfei Hoang, Trong Nghia Chen, Jie IBM Res Yorktown Hts NY 10598 USA Washington State Univ Pullman WA USA MIT IBM Watson AI Lab Cambridge MA USA
learning an effective global model on private and decentralized datasets has become an increasingly important challenge of machine learning when applied in practice. Existing distributed learning paradigms, such as Fe... 详细信息
来源: 评论