咨询与建议

限定检索结果

文献类型

  • 575 篇 会议
  • 15 册 图书
  • 4 篇 期刊文献

馆藏范围

  • 594 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 工学
    • 454 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 85 篇 电气工程
    • 45 篇 信息与通信工程
    • 30 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 7 篇 生物医学工程(可授...
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 153 篇 理学
    • 113 篇 物理学
    • 23 篇 数学
    • 15 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
  • 40 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 15 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 14 篇 教育学
    • 14 篇 教育学
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学
  • 4 篇 军事学

主题

  • 144 篇 machine learning
  • 105 篇 artificial intel...
  • 65 篇 deep learning
  • 28 篇 adversarial mach...
  • 24 篇 reinforcement le...
  • 16 篇 object detection
  • 15 篇 learning systems
  • 14 篇 neural networks
  • 14 篇 federated learni...
  • 13 篇 computer vision
  • 12 篇 cybersecurity
  • 12 篇 security
  • 12 篇 accuracy
  • 12 篇 machine learning...
  • 12 篇 training
  • 11 篇 computer applica...
  • 10 篇 multi-domain ope...
  • 9 篇 ai
  • 9 篇 explainable arti...
  • 9 篇 unsupervised lea...

机构

  • 6 篇 marwadi universi...
  • 6 篇 national univers...
  • 5 篇 us army engineer...
  • 5 篇 us army res lab ...
  • 4 篇 college of compu...
  • 4 篇 siemens corporat...
  • 4 篇 univ maryland co...
  • 4 篇 carnegie mellon ...
  • 4 篇 foundation for r...
  • 3 篇 mcmaster univ 12...
  • 3 篇 korea univ dept ...
  • 3 篇 us mil acad army...
  • 3 篇 ibm tj watson re...
  • 2 篇 johns hopkins un...
  • 2 篇 penn state univ ...
  • 2 篇 the high school ...
  • 2 篇 howard univ wash...
  • 2 篇 wroclaw universi...
  • 2 篇 univ southern ca...
  • 2 篇 shanghai ai lab ...

作者

  • 8 篇 rawat danda b.
  • 6 篇 divyakant meva
  • 6 篇 kalpesh popat
  • 6 篇 sunil bajeja
  • 6 篇 pankaj mudholkar
  • 6 篇 sridaran rajagop...
  • 4 篇 surucu onur
  • 4 篇 giuliano alessan...
  • 4 篇 alsadi naseem
  • 4 篇 helmut degen
  • 4 篇 hilal waleed
  • 4 篇 stavroula ntoa
  • 4 篇 raglin adrienne
  • 4 篇 asher derrik e.
  • 4 篇 yawney john
  • 4 篇 markowitz jared
  • 3 篇 bastian nathanie...
  • 3 篇 schutte klamer
  • 3 篇 kwak heon-gyu
  • 3 篇 price stanton r.

语言

  • 564 篇 英文
  • 30 篇 其他
  • 2 篇 中文
检索条件"任意字段=Conference on Artificial Intelligence and Machine Learning in Defense Applications IV"
594 条 记 录,以下是131-140 订阅
排序:
Certified Robustness of Nearest Neighbors against Data Poisoning and Backdoor Attacks  36
Certified Robustness of Nearest Neighbors against Data Poiso...
收藏 引用
36th AAAI conference on artificial intelligence / 34th conference on Innovative applications of artificial intelligence / 12th Symposium on Educational Advances in artificial intelligence
作者: Jia, Jinyuan Liu, Yupei Cao, Xiaoyu Gong, Neil Zhenqiang Duke Univ Durham NC 27706 USA
Data poisoning attacks and backdoor attacks aim to corrupt a machine learning classifier via modifying, adding, and/or removing some carefully selected training examples, such that the corrupted classifier makes incor... 详细信息
来源: 评论
C2 Design Considerations for Federated AI/ML Systems  4
C2 Design Considerations for Federated AI/ML Systems
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications iv
作者: Michaelis, James Morelli, Alessandro Ali, Muddasar US Army DEVCOM Res Lab 2800 Powder Mill Rd Adelphi MD 20783 USA Florida Inst Human & Machine Cognit 40 S Alcaniz St Pensacola FL 32502 USA
Building on growth in the commercial IoT space, the Internet of Battlefield Things (IoBT) paradigm envisions mixed application of commercial and military IoT technologies to support Multi-Domain Operations via next-ge... 详细信息
来源: 评论
SpreadGNN: Decentralized Multi-Task Federated learning for Graph Neural Networks on Molecular Data  36
SpreadGNN: Decentralized Multi-Task Federated Learning for G...
收藏 引用
36th AAAI conference on artificial intelligence / 34th conference on Innovative applications of artificial intelligence / 12th Symposium on Educational Advances in artificial intelligence
作者: He, Chaoyang Ceyani, Emir Balasubramanian, Keshav Annavaram, Murali Avestimehr, Salman Univ Southern Calif Los Angeles CA 90089 USA
Graph Neural Networks (GNNs) are the first choice methods for graph machine learning problems thanks to their ability to learn state-of-the-art level representations from graph-structured data. However, centralizing a... 详细信息
来源: 评论
Adversarial Attacks and defenses in Deep learning
Adversarial Attacks and Defenses in Deep Learning
收藏 引用
2024 International conference on Emerging Innovations and Advanced Computing, INNOCOMP 2024
作者: Kashyap, Swati Sharma, Akshay Gautam, Savit Sharma, Rishabh Chauhan, Sneha Simran Chandigarh University Department of Computer Science Mohali India
Deep learning, a cornerstone of artificial intelligence (AI), has revolutionized a number of fields, including self-driving cars, image recognition, and intelligent medical applications. These developments have aided ... 详细信息
来源: 评论
MoReco: AI Model Recommendation and Optimization for B5G Networks  4th
MoReco: AI Model Recommendation and Optimization for B5G Net...
收藏 引用
4th International conference on Advanced Network Technologies and Intelligent Computing-ANTIC-Annual
作者: Jaisawal, Sandeep Kumar Chawla, Ditya Mittal, Prerna Roopalakshmi, R. Paul, Ankita Singh, Sukhdeep Samsung R&D Inst India Bangalore Bangalore Karnataka India Manipal Acad Higher Educ Dept CSE Manipal Inst Technol Manipal 576104 Karnataka India
The deployment of artificial intelligence and machine learning (AIML) models in 5G networks has become increasingly critical for optimizing network performance, particularly in applications such as Self-Organizing Net... 详细信息
来源: 评论
Design of an Improved Model for Data Poisoning Detection Using AEAD-TL, GARNN, and FL-DPD
Design of an Improved Model for Data Poisoning Detection Usi...
收藏 引用
2024 International conference on artificial intelligence and Quantum Computation-Based Sensor applications, ICAIQSA 2024
作者: Hatwar, Nitesh L. Sharma, V.K. Manjre, Bhushan M. Bhagwant University Computer Science and Engineering Rajasthan Ajmer India G H Raisoni College of Engineering and Management Information Technology Maharashtra Nagpur India
With the increased vulnerabilities of adversaries with respect to training data concerning machine learning models, the detection and prevention of data poisoning attacks in AI systems are now critical with strong mec... 详细信息
来源: 评论
Network security threat detection algorithm based on machine learning
Network security threat detection algorithm based on machine...
收藏 引用
2024 International conference on Signal Processing and Communication Security, ICSPCS 2024
作者: Ren, Yong School of Artificial Intelligence Wuhan Polytechnic University Wuhan430074 China
Network security threats are increasingly becoming the focus of information system security, and an efficient and intelligent detection mechanism is urgently needed to deal with the evolving attack methods in time. Th... 详细信息
来源: 评论
Evaluating Explainable artificial intelligence (XAI): Algorithmic Explanations for Transparency and Trustworthiness of ML Algorithms and AI Systems  4
Evaluating Explainable Artificial Intelligence (XAI): Algori...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications iv
作者: Khakurel, Utsab Rawat, Danda B. Howard Univ Dept Elect Engn & Comp Sci Washington DC 20059 USA
Explainable artificial intelligence (XAI) is the capability of explaining the reasoning behind the choices made by the machine learning (ML) algorithm which can help understand and maintain the transparency of the dec... 详细信息
来源: 评论
Enhancing Adversarial Robustness in Automatic Modulation Recognition with Dynamical Systems-Inspired Deep learning Frameworks  18th
Enhancing Adversarial Robustness in Automatic Modulation Rec...
收藏 引用
18th International conference on Wireless artificial Intelligent Computing Systems and applications, WASA 2024
作者: Li, Xiaohu Zhou, Yajian Yan, Hongchao Beijing University of Posts and Telecommunications Beijing100876 China The 54th Research Institute of China Electronics Technology Group Corporation HeBei050050 China
This study introduces a novel deep learning framework aimed at enhancing the defensive capabilities of Automatic Modulation Recognition (AMR) systems against adversarial attacks through the application of dynamical sy... 详细信息
来源: 评论
Assured AI reference architecture
Assured AI reference architecture
收藏 引用
conference on Assurance and Security for AI-Enabled Systems
作者: Tyler, Marcus McCeney, James Mitre Corp Mclean VA 22102 USA
The Cross-Industry Standard Process for the development of machine learning applications with Quality assurance (CRISP-ML(Q)) framework describes the full AI model lifecycle from data sourcing to deployment, along wit... 详细信息
来源: 评论