咨询与建议

限定检索结果

文献类型

  • 575 篇 会议
  • 15 册 图书
  • 4 篇 期刊文献

馆藏范围

  • 594 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 工学
    • 454 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 85 篇 电气工程
    • 45 篇 信息与通信工程
    • 30 篇 控制科学与工程
    • 15 篇 机械工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 7 篇 化学工程与技术
    • 7 篇 航空宇航科学与技...
    • 7 篇 生物医学工程(可授...
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 153 篇 理学
    • 113 篇 物理学
    • 23 篇 数学
    • 15 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
  • 40 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 15 篇 医学
    • 9 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 14 篇 教育学
    • 14 篇 教育学
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学
  • 4 篇 军事学

主题

  • 144 篇 machine learning
  • 105 篇 artificial intel...
  • 65 篇 deep learning
  • 28 篇 adversarial mach...
  • 24 篇 reinforcement le...
  • 16 篇 object detection
  • 15 篇 learning systems
  • 14 篇 neural networks
  • 14 篇 federated learni...
  • 13 篇 computer vision
  • 12 篇 cybersecurity
  • 12 篇 security
  • 12 篇 accuracy
  • 12 篇 machine learning...
  • 12 篇 training
  • 11 篇 computer applica...
  • 10 篇 multi-domain ope...
  • 9 篇 ai
  • 9 篇 explainable arti...
  • 9 篇 unsupervised lea...

机构

  • 6 篇 marwadi universi...
  • 6 篇 national univers...
  • 5 篇 us army engineer...
  • 5 篇 us army res lab ...
  • 4 篇 college of compu...
  • 4 篇 siemens corporat...
  • 4 篇 univ maryland co...
  • 4 篇 carnegie mellon ...
  • 4 篇 foundation for r...
  • 3 篇 mcmaster univ 12...
  • 3 篇 korea univ dept ...
  • 3 篇 us mil acad army...
  • 3 篇 ibm tj watson re...
  • 2 篇 johns hopkins un...
  • 2 篇 penn state univ ...
  • 2 篇 the high school ...
  • 2 篇 howard univ wash...
  • 2 篇 wroclaw universi...
  • 2 篇 univ southern ca...
  • 2 篇 shanghai ai lab ...

作者

  • 8 篇 rawat danda b.
  • 6 篇 divyakant meva
  • 6 篇 kalpesh popat
  • 6 篇 sunil bajeja
  • 6 篇 pankaj mudholkar
  • 6 篇 sridaran rajagop...
  • 4 篇 surucu onur
  • 4 篇 giuliano alessan...
  • 4 篇 alsadi naseem
  • 4 篇 helmut degen
  • 4 篇 hilal waleed
  • 4 篇 stavroula ntoa
  • 4 篇 raglin adrienne
  • 4 篇 asher derrik e.
  • 4 篇 yawney john
  • 4 篇 markowitz jared
  • 3 篇 bastian nathanie...
  • 3 篇 schutte klamer
  • 3 篇 kwak heon-gyu
  • 3 篇 price stanton r.

语言

  • 564 篇 英文
  • 30 篇 其他
  • 2 篇 中文
检索条件"任意字段=Conference on Artificial Intelligence and Machine Learning in Defense Applications IV"
594 条 记 录,以下是11-20 订阅
排序:
A Simple and Yet Fairly Effective defense for Graph Neural Networks  38
A Simple and Yet Fairly Effective Defense for Graph Neural N...
收藏 引用
38th AAAI conference on artificial intelligence (AAAI) / 36th conference on Innovative applications of artificial intelligence / 14th Symposium on Educational Advances in artificial intelligence
作者: Ennadir, Sofiane Abbahaddou, Yassine Lutzeyer, Johannes F. Vazirgiannis, Michalis Bostrom, Henrik KTH Royal Inst Technol EECS Stockholm Sweden Inst Polytech Paris Ecole Polytech LIX DaSciM Paris France
Graph Neural Networks (GNNs) have emerged as the dominant approach for machine learning on graph-structured data. However, concerns have arisen regarding the vulnerability of GNNs to small adversarial perturbations. E... 详细信息
来源: 评论
VQUNet: Vector Quantization U-Net for Defending Adversarial Attacks by Regularizing Unwanted Noise  7
VQUNet: Vector Quantization U-Net for Defending Adversarial ...
收藏 引用
7th International conference on machine Vision and applications (ICMVA)
作者: He, Zhixun Singhal, Mukesh Univ Calif Merced Merced CA 95343 USA
Deep Neural Networks (DNN) have become a promising paradigm when developing artificial intelligence (AI) and machine learning (ML) applications. However, DNN applications are vulnerable to fake data that are crafted w... 详细信息
来源: 评论
Fast and Adversarial Robust Kernelized SDU learning  27
Fast and Adversarial Robust Kernelized SDU Learning
收藏 引用
27th International conference on artificial intelligence and Statistics (AISTATS)
作者: Fan, Yajing Shi, Wanli Chang, Yi Gu, Bin Nanjing Univ Informat Sci & Technol Nanjing Peoples R China MBZUAI Abu Dhabi U Arab Emirates Jilin Univ Sch Artificial Intelligence Jilin Jilin Peoples R China
SDU learning, a weakly supervised learning problem with only pairwise similarities, dissimilarities data points and unlabeled data available, has many practical applications. However, it is still lacking in defense ag... 详细信息
来源: 评论
A Voting Approach for Explainable Classification with Rule learning  20th
A Voting Approach for Explainable Classification with Rule L...
收藏 引用
20th International conference on artificial intelligence applications and Innovations (AIAI)
作者: Noessig, Albert Hell, Tobias Moser, Georg Univ Innsbruck Dept Comp Sci Tyrol Austria Data Lab Hell GmbH Europastr 2a A-6170 Tyrol Austria
State-of-the-art results in typical classification tasks are mostly achieved by unexplainable machine learning methods, like deep neural networks, for instance. Contrarily, in this paper, we investigate the applicatio... 详细信息
来源: 评论
Exploring the Feasibility of Event-Related Potentials in Visual Surveillance applications  12
Exploring the Feasibility of Event-Related Potentials in Vis...
收藏 引用
12th International Winter conference on Brain-Computer Interface (BCI)
作者: Kwon, Byoung-Hee Han, Dong-Kyun Ahn, Hyung-Ju Korea Univ Dept Brain & Cognit Engn Seoul South Korea Korea Univ Dept Artificial Intelligence Seoul South Korea
This study investigates the feasibility of leveraging Event-Related Potentials (ERP) within the realm of military surveillance, utilizing non-invasive brain-computer interface (BCI) technologies. Focused on enhancing ... 详细信息
来源: 评论
Collaborative defense Strategies: AI, ML, and Cybersecurity: A Comprehensive Study  12th
Collaborative Defense Strategies: AI, ML, and Cybersecurity:...
收藏 引用
12th International conference on Frontiers of Intelligent Computing: Theory and applications, FICTA 2024
作者: Borah, Samarjeet Dhabliya, Dharmesh Dhage, Prashant Shukla, Jyoti Rai, Sumit Kumar Bhattacharya, Saurabh Department of Computer Applications Sikkim Manipal Institute of Technology Sikkim Manipal University Sikkim India Department of Information Technology Vishwakarma Institute of Information Technology Maharashtra Pune India Nagpur Campus Pune India Computer Science and Engineering Arya College of Engineering Jaipur India Department of Mechanical Engineering Dr. D. Y. Patil Institute of Technology Maharashtra Pimpri Pune India Assistant Professor SCSE Galgotias University Uttar Pradesh Greater Noida India
In the fast-changing field of cybersecurity, the rise of advanced threats requires new and creative defense strategies. This study thoroughly examines collaborative defense strategies, focusing on the utilization of a... 详细信息
来源: 评论
artificial intelligence in Portfolio Selection Problem: A Review and Future Perspectives  19th
Artificial Intelligence in Portfolio Selection Problem: A Re...
收藏 引用
19th International conference on Hybrid artificial intelligence Systems
作者: Sanchez-Fernandez, Alvaro Diez-Gonzalez, Javier Perez, Hilde Univ Leon Dept Mech Comp & Aerosp Engn Leon 24071 Spain
Portfolio selection, the process of selecting the optimal combination of securities to achieve investors objectives, is a leading problem in finance. Ever since its inception, the problem has been widely addressed the... 详细信息
来源: 评论
2nd International conference on artificial intelligence and machine learning applications: Healthcare and Internet of Things, AIMLA 2024
2nd International Conference on Artificial Intelligence and ...
收藏 引用
2nd International conference on artificial intelligence and machine learning applications, AIMLA 2024
The proceedings contain 220 papers. The topics discussed include: unmasking pneumothorax: deep learning strategies for precise classification and segmentation;CNN-enabled generation of comprehensive reports from chest...
来源: 评论
Toward an adaptive deep reinforcement learning agent for maritime platform defense  5
Toward an adaptive deep reinforcement learning agent for mar...
收藏 引用
conference on artificial intelligence and machine learning for Multi-Domain Operations applications V
作者: Markowitz, Jared Staley, Edward W. Johns Hopkins Univ Appl Phys Lab Laurel MD 20723 USA
We explore strategies for improving the versatility of deep reinforcement learning (DRL) agents trained for maritime platform defense, in an effort to avoid impractical retraining when conditions change. DRL platform ... 详细信息
来源: 评论
defense Method Challenges Against Backdoor Attacks in Neural Networks  6
Defense Method Challenges Against Backdoor Attacks in Neural...
收藏 引用
6th International conference on artificial intelligence in Information and Communication, ICAIIC 2024
作者: Shamshiri, Samaneh Sohn, Insoo Dongguk University Division of Electronics and Electrical Engineering Seoul Korea Republic of
Open-source machine-learning models demon-strated promising performance in a wide range of applications. However, they have been proved to be fragile against backdoor attacks. Backdoor attack, as a cyber-Threat, resul... 详细信息
来源: 评论