咨询与建议

限定检索结果

文献类型

  • 29,399 篇 会议
  • 1,396 册 图书
  • 226 篇 期刊文献

馆藏范围

  • 31,019 篇 电子文献
  • 2 种 纸本馆藏

日期分布

学科分类号

  • 17,289 篇 工学
    • 13,630 篇 计算机科学与技术...
    • 5,205 篇 软件工程
    • 2,971 篇 机械工程
    • 2,646 篇 光学工程
    • 1,413 篇 控制科学与工程
    • 1,407 篇 电气工程
    • 1,335 篇 信息与通信工程
    • 656 篇 生物工程
    • 579 篇 仪器科学与技术
    • 513 篇 生物医学工程(可授...
    • 466 篇 电子科学与技术(可...
    • 251 篇 化学工程与技术
    • 214 篇 安全科学与工程
    • 142 篇 交通运输工程
    • 132 篇 建筑学
    • 121 篇 材料科学与工程(可...
    • 119 篇 土木工程
  • 5,060 篇 理学
    • 3,128 篇 物理学
    • 2,407 篇 数学
    • 824 篇 生物学
    • 802 篇 统计学(可授理学、...
    • 300 篇 系统科学
    • 229 篇 化学
  • 3,832 篇 医学
    • 3,800 篇 临床医学
    • 187 篇 基础医学(可授医学...
    • 140 篇 药学(可授医学、理...
  • 1,061 篇 管理学
    • 617 篇 图书情报与档案管...
    • 469 篇 管理科学与工程(可...
    • 145 篇 工商管理
  • 373 篇 艺术学
    • 373 篇 设计学(可授艺术学...
  • 116 篇 法学
  • 81 篇 农学
  • 48 篇 教育学
  • 43 篇 经济学
  • 18 篇 军事学
  • 8 篇 文学

主题

  • 12,597 篇 computer vision
  • 5,699 篇 pattern recognit...
  • 3,181 篇 training
  • 2,263 篇 cameras
  • 2,178 篇 computational mo...
  • 2,117 篇 feature extracti...
  • 2,049 篇 image segmentati...
  • 1,971 篇 visualization
  • 1,967 篇 shape
  • 1,642 篇 robustness
  • 1,491 篇 layout
  • 1,476 篇 three-dimensiona...
  • 1,442 篇 computer science
  • 1,338 篇 computer archite...
  • 1,294 篇 object detection
  • 1,220 篇 semantics
  • 1,143 篇 face recognition
  • 1,107 篇 conferences
  • 1,077 篇 benchmark testin...
  • 1,056 篇 humans

机构

  • 137 篇 univ sci & techn...
  • 134 篇 tsinghua univers...
  • 134 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 101 篇 microsoft resear...
  • 97 篇 zhejiang univers...
  • 95 篇 national laborat...
  • 93 篇 shanghai jiao to...
  • 93 篇 zhejiang univ pe...
  • 85 篇 university of sc...
  • 79 篇 shanghai ai lab ...
  • 78 篇 swiss fed inst t...
  • 65 篇 microsoft res as...
  • 62 篇 adobe research
  • 62 篇 computer vision ...
  • 61 篇 peking univ peop...
  • 58 篇 univ oxford oxfo...
  • 57 篇 google mountain ...
  • 57 篇 hong kong univ s...
  • 56 篇 google res mount...

作者

  • 107 篇 umapada pal
  • 81 篇 van gool luc
  • 68 篇 zhang lei
  • 59 篇 timofte radu
  • 41 篇 yang yi
  • 37 篇 loy chen change
  • 37 篇 hanqing lu
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 32 篇 nassir navab
  • 32 篇 wang liang
  • 30 篇 tian qi
  • 29 篇 h. bischof
  • 29 篇 jan-michael frah...
  • 29 篇 vittorio murino
  • 29 篇 darrell trevor
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 murino vittorio
  • 27 篇 chen chen

语言

  • 30,855 篇 英文
  • 96 篇 其他
  • 90 篇 中文
  • 6 篇 土耳其文
  • 2 篇 日文
  • 2 篇 俄文
  • 1 篇 西班牙文
检索条件"任意字段=Conference on Computer Vision and Pattern Recognition"
31021 条 记 录,以下是4191-4200 订阅
排序:
Unsupervised Hyperbolic Representation Learning via Message Passing Auto-Encoders
Unsupervised Hyperbolic Representation Learning via Message ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Park, Jiwoong Cho, Junho Chang, Hyung Jin Choi, Jin Young Seoul Natl Univ Dept ECE ASRI Seoul South Korea Univ Birmingham Sch Comp Sci Birmingham W Midlands England
Most of the existing literature regarding hyperbolic embedding concentrate upon supervised learning, whereas the use of unsupervised hyperbolic embedding is less well explored. In this paper, we analyze how unsupervis... 详细信息
来源: 评论
Fair Attribute Classification through Latent Space De-biasing
Fair Attribute Classification through Latent Space De-biasin...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ramaswamy, Vikram V. Kim, Sunnie S. Y. Russakovsky, Olga Princeton Univ Princeton NJ 08544 USA
Fairness in visual recognition is becoming a prominent and critical topic of discussion as recognition systems are deployed at scale in the real world. Models trained from data in which target labels are correlated wi... 详细信息
来源: 评论
StyLitGAN: Image-Based Relighting via Latent Control
StyLitGAN: Image-Based Relighting via Latent Control
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Anand Bhattad James Soole D.A. Forsyth University of Illinois Urbana-Champaign
We describe a novel method, StyLitGAN, for relighting and resurfacing images in the absence of labeled data. StyL-itGAN generates images with realistic lighting effects, including cast shadows, soft shadows, inter-ref... 详细信息
来源: 评论
CyberDemo: Augmenting Simulated Human Demonstration for Real-World Dexterous Manipulation
CyberDemo: Augmenting Simulated Human Demonstration for Real...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jun Wang Yuzhe Qin Kaiming Kuang Yigit Korkmaz Akhilan Gurumoorthy Hao Su Xiaolong Wang UC San Diego University of Southern California
We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, Cyber... 详细信息
来源: 评论
Unsupervised Hyperbolic Metric Learning
Unsupervised Hyperbolic Metric Learning
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yan, Jiexi Luo, Lei Deng, Cheng Huang, Heng Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Univ Pittsburgh Dept Elect & Comp Engn Pittsburgh PA 15260 USA JD Finance Amer Corp Mountain View CA 94043 USA
Learning feature embedding directly from images without any human supervision is a very challenging and essential task in the field of computer vision and machine learning. Following the paradigm in supervised manner,... 详细信息
来源: 评论
Fusing Forces: Deep-Human-Guided Refinement of Segmentation Masks  27th
Fusing Forces: Deep-Human-Guided Refinement of Segmentation ...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Sterzinger, Rafael Stippel, Christian Sablatnig, Robert Computer Vision Lab TU Wien Vienna Austria
Etruscan mirrors constitute a significant category in Etruscan art, characterized by elaborate figurative illustrations featured on their backside. A laborious and costly aspect of their analysis and documen... 详细信息
来源: 评论
Beyond Short Clips: End-to-End Video-Level Learning with Collaborative Memories
Beyond Short Clips: End-to-End Video-Level Learning with Col...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Xitong Fan, Haoqi Torresani, Lorenzo Davis, Larry Wang, Heng Univ Maryland College Pk MD 20742 USA Facebook AI Menlo Pk CA USA
The standard way of training video models entails sampling at each iteration a single clip from a video and optimizing the clip prediction with respect to the video-level label. We argue that a single clip may not hav... 详细信息
来源: 评论
Towards Real-World Blind Face Restoration with Generative Facial Prior
Towards Real-World Blind Face Restoration with Generative Fa...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xintao Li, Yu Zhang, Honglun Shan, Ying Tencent PCG Appl Res Ctr ARC Shenzhen Peoples R China
Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric pri... 详细信息
来源: 评论
Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks
Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neu...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Williams, Francis Trager, Matthew Bruna, Joan Zorin, Denis NYU New York NY 10003 USA Amazon Seattle WA USA
We present Neural Splines, a technique for 3D surface reconstruction that is based on random feature kernels arising from infinitely-wide shallow ReLU networks. Our method achieves state-of-the-art results, outperform... 详细信息
来源: 评论
DeepObjStyle: Deep Object-based Photo Style Transfer
DeepObjStyle: Deep Object-based Photo Style Transfer
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Mastan, Indra Deep Raman, Shanmuganathan Indian Inst Technol Gandhinagar Gandhinagar Gujarat India
One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input images (style and content). An efficient strategy would be to define an object map bet... 详细信息
来源: 评论