咨询与建议

限定检索结果

文献类型

  • 29,402 篇 会议
  • 1,394 册 图书
  • 218 篇 期刊文献

馆藏范围

  • 31,012 篇 电子文献
  • 2 种 纸本馆藏

日期分布

学科分类号

  • 17,280 篇 工学
    • 13,621 篇 计算机科学与技术...
    • 5,203 篇 软件工程
    • 2,970 篇 机械工程
    • 2,648 篇 光学工程
    • 1,411 篇 控制科学与工程
    • 1,410 篇 电气工程
    • 1,333 篇 信息与通信工程
    • 656 篇 生物工程
    • 576 篇 仪器科学与技术
    • 513 篇 生物医学工程(可授...
    • 465 篇 电子科学与技术(可...
    • 251 篇 化学工程与技术
    • 213 篇 安全科学与工程
    • 141 篇 交通运输工程
    • 132 篇 建筑学
    • 121 篇 材料科学与工程(可...
    • 119 篇 土木工程
  • 5,056 篇 理学
    • 3,130 篇 物理学
    • 2,404 篇 数学
    • 824 篇 生物学
    • 802 篇 统计学(可授理学、...
    • 299 篇 系统科学
    • 228 篇 化学
  • 3,830 篇 医学
    • 3,799 篇 临床医学
    • 186 篇 基础医学(可授医学...
    • 140 篇 药学(可授医学、理...
  • 1,060 篇 管理学
    • 617 篇 图书情报与档案管...
    • 468 篇 管理科学与工程(可...
    • 146 篇 工商管理
  • 373 篇 艺术学
    • 373 篇 设计学(可授艺术学...
  • 116 篇 法学
  • 81 篇 农学
  • 48 篇 教育学
  • 43 篇 经济学
  • 18 篇 军事学
  • 8 篇 文学

主题

  • 12,593 篇 computer vision
  • 5,698 篇 pattern recognit...
  • 3,184 篇 training
  • 2,263 篇 cameras
  • 2,172 篇 computational mo...
  • 2,119 篇 feature extracti...
  • 2,050 篇 image segmentati...
  • 1,970 篇 shape
  • 1,968 篇 visualization
  • 1,636 篇 robustness
  • 1,501 篇 layout
  • 1,477 篇 three-dimensiona...
  • 1,446 篇 computer science
  • 1,338 篇 computer archite...
  • 1,284 篇 object detection
  • 1,225 篇 semantics
  • 1,151 篇 face recognition
  • 1,108 篇 conferences
  • 1,072 篇 benchmark testin...
  • 1,050 篇 humans

机构

  • 136 篇 univ sci & techn...
  • 134 篇 tsinghua univers...
  • 134 篇 univ chinese aca...
  • 117 篇 chinese univ hon...
  • 102 篇 microsoft resear...
  • 97 篇 zhejiang univers...
  • 95 篇 national laborat...
  • 93 篇 shanghai jiao to...
  • 93 篇 zhejiang univ pe...
  • 85 篇 university of sc...
  • 80 篇 swiss fed inst t...
  • 79 篇 shanghai ai lab ...
  • 69 篇 microsoft res as...
  • 62 篇 adobe research
  • 61 篇 peking univ peop...
  • 58 篇 univ oxford oxfo...
  • 57 篇 google mountain ...
  • 57 篇 hong kong univ s...
  • 56 篇 google res mount...
  • 56 篇 univ toronto on

作者

  • 108 篇 umapada pal
  • 81 篇 van gool luc
  • 68 篇 zhang lei
  • 53 篇 timofte radu
  • 41 篇 yang yi
  • 38 篇 hanqing lu
  • 37 篇 loy chen change
  • 33 篇 liu yang
  • 33 篇 wang liang
  • 32 篇 nassir navab
  • 32 篇 xiaoou tang
  • 29 篇 h. bischof
  • 29 篇 jan-michael frah...
  • 29 篇 vittorio murino
  • 29 篇 darrell trevor
  • 29 篇 chen chen
  • 28 篇 li stan z.
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 tian qi

语言

  • 30,709 篇 英文
  • 236 篇 其他
  • 93 篇 中文
  • 6 篇 土耳其文
  • 2 篇 日文
  • 2 篇 俄文
检索条件"任意字段=Conference on Computer Vision and Pattern Recognition"
31014 条 记 录,以下是4691-4700 订阅
排序:
StyleCineGAN: Landscape Cinemagraph Generation Using a Pre-trained StyleGAN
StyleCineGAN: Landscape Cinemagraph Generation Using a Pre-t...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jongwoo Choi Kwanggyoon Seo Amirsaman Ashtari Junyong Noh Visual Media Lab KAIST
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent un-conditional video generation, we leverage a powerful pre... 详细信息
来源: 评论
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptat...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Roy, Subhankar Krivosheev, Evgeny Zhong, Zhun Sebe, Nicu Ricci, Elisa Univ Trento Trento TN Italy Fdn Bruno Kessler Povo TN Italy
In this paper we address multi-target domain adaptation (MTDA), where given one labeled source dataset and multiple unlabeled target datasets that differ in data distributions, the task is to learn a robust predictor ... 详细信息
来源: 评论
Accelerating Neural Field Training via Soft Mining
Accelerating Neural Field Training via Soft Mining
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Shakiba Kheradmand Daniel Rebain Gopal Sharma Hossam Isack Abhishek Kar Andrea Tagliasacchi Kwang Moo Yi University of British Columbia Google Research Google DeepMind Simon Fraser University University of Toronto
We present an approach to accelerate Neural Field training by efficiently selecting sampling locations. While Neural Fields have recently become popular, it is often trained by uniformly sampling the training domain, ... 详细信息
来源: 评论
Partition-Guided GANs
Partition-Guided GANs
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Armandpour, Mohammadreza Sadeghian, Ali Li, Chunyuan Zhou, Mingyuan Texas A&M Univ College Stn TX 77843 USA Univ Florida Gainesville FL 32611 USA Microsoft Res Redmond WA USA Univ Texas Austin Austin TX 78712 USA
Despite the success of Generative Adversarial Networks (GANs), their training suffers from several well-known problems, including mode collapse and difficulties learning a disconnected set of manifolds. In this paper,... 详细信息
来源: 评论
Development and Analysis of computer vision Based SSL Detection Technology for Marine Environment
Development and Analysis of Computer Vision Based SSL Detect...
收藏 引用
Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC), Asia-Pacific conference on
作者: Yuxiang Cui Dalian University of Technology Dalian China
computer vision has been widely used in the field of navigation safety, including ship identification, course prediction, and other applications, as a result of the fast development of pattern recognition and intellig... 详细信息
来源: 评论
Graph-based High-Order Relation Discovery for Fine-grained recognition
Graph-based High-Order Relation Discovery for Fine-grained R...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Yifan Yan, Ke Huang, Feiyue Li, Jia Beihang Univ State Key Lab Virtual Real Technol & Syst SCSE Beijing Peoples R China Tencent Youtu Lab Shanghai Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Fine-grained object recognition aims to learn effective features that can identify the subtle differences between visually similar objects. Most of the existing works tend to amplify discriminative part regions with a... 详细信息
来源: 评论
Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation
Adapt Before Comparison: A New Perspective on Cross-Domain F...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jonas Herzog Zhejiang University
Few-shot segmentation performance declines substantially when facing images from a domain different than the training domain, effectively limiting real-world use cases. To alleviate this, recently cross-domain few-sho... 详细信息
来源: 评论
Determining Dendrometry Using Drone Scouting, Convolutional Neural Networks and Point Clouds
Determining Dendrometry Using Drone Scouting, Convolutional ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jensen, Kim Krogh, Oskar Kondrup Jorgensen, Marius Willemoes Lehotsky, Daniel Andersen, Anton Bock Porqueras, Ernest Sondergaard, Jens Aksel S. Gade, Rikke Aalborg Univ Dept Elect Syst Aalborg Denmark TeeJet Technol Aabybro Denmark Aalborg Univ Sect Media Technol Aalborg Denmark
This paper presents a solution for mapping the location of trees in an orchard and estimating the dendrometric data of the trees. The combined solution consists of a mapping and navigation algorithm, which allows for ... 详细信息
来源: 评论
Multi-modal Aerial View Image Challenge: SAR Classification
Multi-modal Aerial View Image Challenge: SAR Classification
收藏 引用
IEEE computer Society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Spencer Low Oliver Nina Dylan Bowald Angel D. Sappa Nathan Inkawhich Peter Bruns Brigham Young University Provo Utah Air Force Research Laboratory Dayton OH Ecuador Computer Vision Center ESPOL Polytechnic University Spain Air Force Research Laboratory Rome NY University of Utah Salt Lake UT
This manuscript delineates the outcomes of the fourth Multi-modal Aerial View Image Challenge - Classification (MAVIC-C). The challenge is aimed at advancing the development of recognition models that leverage Synthet... 详细信息
来源: 评论
Wildfires Detection and Segmentation Using Deep CNNs and vision Transformers  1
收藏 引用
26th International conference on pattern recognition, ICPR 2022
作者: Ghali, Rafik Akhloufi, Moulay A. Department of Computer Science Université de Moncton MonctonNB Canada
Wildfires are an important natural risk which causes enormous damage to the environment. Many researchers are working to improve firefighting using AI. Various vision-based fire detection methods have been proposed to... 详细信息
来源: 评论