咨询与建议

限定检索结果

文献类型

  • 29,393 篇 会议
  • 1,358 册 图书
  • 225 篇 期刊文献

馆藏范围

  • 30,974 篇 电子文献
  • 2 种 纸本馆藏

日期分布

学科分类号

  • 17,280 篇 工学
    • 13,630 篇 计算机科学与技术...
    • 5,193 篇 软件工程
    • 2,983 篇 机械工程
    • 2,643 篇 光学工程
    • 1,421 篇 控制科学与工程
    • 1,411 篇 电气工程
    • 1,344 篇 信息与通信工程
    • 656 篇 生物工程
    • 577 篇 仪器科学与技术
    • 513 篇 生物医学工程(可授...
    • 468 篇 电子科学与技术(可...
    • 251 篇 化学工程与技术
    • 212 篇 安全科学与工程
    • 140 篇 交通运输工程
    • 132 篇 建筑学
    • 123 篇 材料科学与工程(可...
    • 119 篇 土木工程
  • 5,054 篇 理学
    • 3,127 篇 物理学
    • 2,406 篇 数学
    • 824 篇 生物学
    • 802 篇 统计学(可授理学、...
    • 299 篇 系统科学
    • 228 篇 化学
  • 3,831 篇 医学
    • 3,799 篇 临床医学
    • 185 篇 基础医学(可授医学...
    • 140 篇 药学(可授医学、理...
  • 1,059 篇 管理学
    • 617 篇 图书情报与档案管...
    • 467 篇 管理科学与工程(可...
    • 145 篇 工商管理
  • 373 篇 艺术学
    • 373 篇 设计学(可授艺术学...
  • 116 篇 法学
  • 81 篇 农学
  • 48 篇 教育学
  • 43 篇 经济学
  • 18 篇 军事学
  • 8 篇 文学

主题

  • 12,602 篇 computer vision
  • 5,697 篇 pattern recognit...
  • 3,180 篇 training
  • 2,263 篇 cameras
  • 2,178 篇 computational mo...
  • 2,116 篇 feature extracti...
  • 2,048 篇 image segmentati...
  • 1,970 篇 visualization
  • 1,967 篇 shape
  • 1,642 篇 robustness
  • 1,493 篇 layout
  • 1,476 篇 three-dimensiona...
  • 1,445 篇 computer science
  • 1,338 篇 computer archite...
  • 1,296 篇 object detection
  • 1,220 篇 semantics
  • 1,142 篇 face recognition
  • 1,107 篇 conferences
  • 1,077 篇 benchmark testin...
  • 1,056 篇 humans

机构

  • 137 篇 univ sci & techn...
  • 134 篇 tsinghua univers...
  • 134 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 101 篇 microsoft resear...
  • 97 篇 zhejiang univers...
  • 94 篇 national laborat...
  • 93 篇 shanghai jiao to...
  • 93 篇 zhejiang univ pe...
  • 85 篇 university of sc...
  • 79 篇 shanghai ai lab ...
  • 78 篇 swiss fed inst t...
  • 65 篇 microsoft res as...
  • 62 篇 adobe research
  • 62 篇 computer vision ...
  • 61 篇 peking univ peop...
  • 58 篇 univ oxford oxfo...
  • 57 篇 google mountain ...
  • 57 篇 hong kong univ s...
  • 56 篇 google res mount...

作者

  • 107 篇 umapada pal
  • 81 篇 van gool luc
  • 68 篇 zhang lei
  • 59 篇 timofte radu
  • 41 篇 yang yi
  • 37 篇 loy chen change
  • 37 篇 hanqing lu
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 32 篇 nassir navab
  • 32 篇 wang liang
  • 30 篇 tian qi
  • 29 篇 h. bischof
  • 29 篇 jan-michael frah...
  • 29 篇 vittorio murino
  • 29 篇 darrell trevor
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 murino vittorio
  • 27 篇 chen chen

语言

  • 30,833 篇 英文
  • 92 篇 中文
  • 73 篇 其他
  • 6 篇 土耳其文
  • 2 篇 日文
  • 2 篇 俄文
  • 1 篇 西班牙文
检索条件"任意字段=Conference on Computer Vision and Pattern Recognition"
30976 条 记 录,以下是4741-4750 订阅
排序:
Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit Neural Representation
Self-Supervised Arbitrary-Scale Point Clouds Upsampling via ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Wenbo Liu, Xianming Zhong, Zhiwei Jiang, Junjun Gao, Wei Li, Ge Ji, Xiangyang Harbin Inst Technol Harbin Peoples R China Peng Cheng Lab Shenzhen Peoples R China Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Tsinghua Univ Beijing Peoples R China
Point clouds upsampling is a challenging issue to generate dense and uniform point clouds from the given sparse input. Most existing methods either take the end-to-end supervised learning based manner, where large amo... 详细信息
来源: 评论
Hierarchical Lovasz Embeddings for Proposal-free Panoptic Segmentation
Hierarchical Lovasz Embeddings for Proposal-free Panoptic Se...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Kerola, Tommi Li, Jie Kanehira, Atsushi Kudo, Yasunori Vallet, Alexis Gaidon, Adrien Preferred Networks Inc Tokyo Japan Toyota Res Inst TRI Los Altos CA USA
Panoptic segmentation brings together two separate tasks: instance and semantic segmentation. Although they are related, unifying them faces an apparent paradox: how to learn simultaneously instance-specific and categ... 详细信息
来源: 评论
Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction
Dynamic Neural Radiance Fields for Monocular 4D Facial Avata...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Gafni, Guy Thies, Justus Zollhoefer, Michael Niessner, Matthias Tech Univ Munich Munich Germany Facebook Real Labs Res Pittsburgh PA USA
We present dynamic neural radiance fields for modeling the appearance and dynamics of a human face(1). Digitally modeling and reconstructing a talking human is a key building-block for a variety of applications. Espec... 详细信息
来源: 评论
Efficient new-view synthesis using pairwise dictionary priors
Efficient new-view synthesis using pairwise dictionary prior...
收藏 引用
IEEE conference on computer vision and pattern recognition
作者: Woodford, O. J. Reid, I. D. Fitzgibbon, A. W. Univ Oxford Dept Engn Sci Parks Rd Oxford OX1 3PJ England Microsoft Res Cambridge England
New-view synthesis (NVS) using texture priors (as opposed to surface-smoothness priors) can yield high quality results, but the standard formulation is in terms of large-clique Markov Random Fields (MRFs). Only local ... 详细信息
来源: 评论
CVF-SID: Cyclic multi-Variate Function for Self-Supervised Image Denoising by Disentangling Noise from Image
CVF-SID: Cyclic multi-Variate Function for Self-Supervised I...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Neshatavar, Reyhaneh Yavartanoo, Mohsen Son, Sanghyun Lee, Kyoung Mu Seoul Natl Univ Dept ECE Seoul South Korea Seoul Natl Univ ASRI Seoul South Korea Seoul Natl Univ IPAI Seoul South Korea
Recently, significant progress has been made on image denoising with strong supervision from large-scale datasets. However, obtaining well-aligned noisy-clean training image pairs for each specific scenario is complic... 详细信息
来源: 评论
Deep Network Interpolation for Continuous Imagery Effect Transition  32
Deep Network Interpolation for Continuous Imagery Effect Tra...
收藏 引用
32nd IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xintao Yu, Ke Dong, Chao Tang, Xiaoou Loy, Chen Change Chinese Univ Hong Kong CUHK SenseTime Joint Lab Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol SIAT SenseTime Joint Lab Shenzhen Guangdong Peoples R China Nanyang Technol Univ Singapore Singapore
Deep convolutional neural network has demonstrated its capability of learning a deterministic mapping for the desired imagery effect. However, the large variety of user flavors motivates the possibility of continuous ... 详细信息
来源: 评论
Background Splitting: Finding Rare Classes in a Sea of Background
Background Splitting: Finding Rare Classes in a Sea of Backg...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Mullapudi, Ravi Teja Poms, Fait Mark, William R. Ramanan, Deva Fatahalian, Kayvon Stanford Univ Stanford CA 94305 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Res Mountain View CA 94043 USA
We focus on the problem of training deep image classification models for a small number of extremely rare categories. In this common, real-world scenario, almost all images belong to the background category in the dat... 详细信息
来源: 评论
Multi-Label Learning from Single Positive Labels
Multi-Label Learning from Single Positive Labels
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cole, Elijah Mac Aodha, Oisin Lorieul, Titouan Perona, Pietro Morris, Dan Jojic, Nebojsa CALTECH Pasadena CA 91125 USA Univ Edinburgh Edinburgh Midlothian Scotland INRIA Rocquencourt France Microsoft AI Earth Washington DC USA Microsoft Res Redmond WA USA
Predicting all applicable labels for a given image is known as multi-label classification. Compared to the standard multi-class case (where each image has only one label), it is considerably more challenging to annota... 详细信息
来源: 评论
NOC-REK: Novel Object Captioning with Retrieved Vocabulary from External Knowledge
NOC-REK: Novel Object Captioning with Retrieved Vocabulary f...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Duc Minh Vo Chen, Hong Sugimoto, Akihiro Nakayama, Hideki Univ Tokyo Tokyo Japan Natl Inst Informat Tokyo Japan
Novel object captioning aims at describing objects absent from training data, with the key ingredient being the provision of object vocabulary to the model. Although existing methods heavily rely on an object detectio... 详细信息
来源: 评论
Convolutional Prompting meets Language Models for Continual Learning
Convolutional Prompting meets Language Models for Continual ...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Roy, Anurag Moulick, Riddhiman Verma, Vinay K. Ghosh, Saptarshi Das, Abir IIT Kharagpur Kharagpur W Bengal India IML Amazon India Hyderabad India
Continual Learning (CL) enables machine learning models to learn from continuously shifting new training data in absence of data from old tasks. Recently, pretrained vision transformers combined with prompt tuning hav... 详细信息
来源: 评论