咨询与建议

限定检索结果

文献类型

  • 29,393 篇 会议
  • 1,358 册 图书
  • 225 篇 期刊文献

馆藏范围

  • 30,974 篇 电子文献
  • 2 种 纸本馆藏

日期分布

学科分类号

  • 17,280 篇 工学
    • 13,630 篇 计算机科学与技术...
    • 5,193 篇 软件工程
    • 2,983 篇 机械工程
    • 2,643 篇 光学工程
    • 1,421 篇 控制科学与工程
    • 1,411 篇 电气工程
    • 1,344 篇 信息与通信工程
    • 656 篇 生物工程
    • 577 篇 仪器科学与技术
    • 513 篇 生物医学工程(可授...
    • 468 篇 电子科学与技术(可...
    • 251 篇 化学工程与技术
    • 212 篇 安全科学与工程
    • 140 篇 交通运输工程
    • 132 篇 建筑学
    • 123 篇 材料科学与工程(可...
    • 119 篇 土木工程
  • 5,054 篇 理学
    • 3,127 篇 物理学
    • 2,406 篇 数学
    • 824 篇 生物学
    • 802 篇 统计学(可授理学、...
    • 299 篇 系统科学
    • 228 篇 化学
  • 3,831 篇 医学
    • 3,799 篇 临床医学
    • 185 篇 基础医学(可授医学...
    • 140 篇 药学(可授医学、理...
  • 1,059 篇 管理学
    • 617 篇 图书情报与档案管...
    • 467 篇 管理科学与工程(可...
    • 145 篇 工商管理
  • 373 篇 艺术学
    • 373 篇 设计学(可授艺术学...
  • 116 篇 法学
  • 81 篇 农学
  • 48 篇 教育学
  • 43 篇 经济学
  • 18 篇 军事学
  • 8 篇 文学

主题

  • 12,602 篇 computer vision
  • 5,697 篇 pattern recognit...
  • 3,180 篇 training
  • 2,263 篇 cameras
  • 2,178 篇 computational mo...
  • 2,116 篇 feature extracti...
  • 2,048 篇 image segmentati...
  • 1,970 篇 visualization
  • 1,967 篇 shape
  • 1,642 篇 robustness
  • 1,493 篇 layout
  • 1,476 篇 three-dimensiona...
  • 1,445 篇 computer science
  • 1,338 篇 computer archite...
  • 1,296 篇 object detection
  • 1,220 篇 semantics
  • 1,142 篇 face recognition
  • 1,107 篇 conferences
  • 1,077 篇 benchmark testin...
  • 1,056 篇 humans

机构

  • 137 篇 univ sci & techn...
  • 134 篇 tsinghua univers...
  • 134 篇 univ chinese aca...
  • 118 篇 chinese univ hon...
  • 101 篇 microsoft resear...
  • 97 篇 zhejiang univers...
  • 94 篇 national laborat...
  • 93 篇 shanghai jiao to...
  • 93 篇 zhejiang univ pe...
  • 85 篇 university of sc...
  • 79 篇 shanghai ai lab ...
  • 78 篇 swiss fed inst t...
  • 65 篇 microsoft res as...
  • 62 篇 adobe research
  • 62 篇 computer vision ...
  • 61 篇 peking univ peop...
  • 58 篇 univ oxford oxfo...
  • 57 篇 google mountain ...
  • 57 篇 hong kong univ s...
  • 56 篇 google res mount...

作者

  • 107 篇 umapada pal
  • 81 篇 van gool luc
  • 68 篇 zhang lei
  • 59 篇 timofte radu
  • 41 篇 yang yi
  • 37 篇 loy chen change
  • 37 篇 hanqing lu
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 32 篇 nassir navab
  • 32 篇 wang liang
  • 30 篇 tian qi
  • 29 篇 h. bischof
  • 29 篇 jan-michael frah...
  • 29 篇 vittorio murino
  • 29 篇 darrell trevor
  • 27 篇 li xin
  • 27 篇 vasconcelos nuno
  • 27 篇 murino vittorio
  • 27 篇 chen chen

语言

  • 30,833 篇 英文
  • 92 篇 中文
  • 73 篇 其他
  • 6 篇 土耳其文
  • 2 篇 日文
  • 2 篇 俄文
  • 1 篇 西班牙文
检索条件"任意字段=Conference on Computer Vision and Pattern Recognition"
30976 条 记 录,以下是4811-4820 订阅
排序:
Partially Shared Multi-Task Convolutional Neural Network with Local Constraint for Face Attribute Learning  31
Partially Shared Multi-Task Convolutional Neural Network wit...
收藏 引用
31st IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cao, Jiajiong Li, Yingming Zhang, Zhongfei Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou Zhejiang Peoples R China
In this paper, we study the face attribute learning problem by considering the identity information and attribute relationships simultaneously. In particular, we first introduce a Partially Shared Multi-task Convoluti... 详细信息
来源: 评论
BACON: Band-limited Coordinate Networks for Multiscale Scene Representation
BACON: Band-limited Coordinate Networks for Multiscale Scene...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lindell, David B. Van Veen, Dave Park, Jeong Joon Wetzstein, Gordon Stanford Univ Stanford CA 94305 USA
Coordinate-based networks have emerged as a powerful tool for 3D representation and scene reconstruction. These networks are trained to map continuous input coordinates to the value of a signal at each point. Still, c... 详细信息
来源: 评论
Human interaction recognition based on the co-occurrence of visual words
Human interaction recognition based on the co-occurrence of ...
收藏 引用
2014 IEEE conference on computer vision and pattern recognition Workshops, CVPRW 2014
作者: Slimani, Khadidja Nour El Houda Benezeth, Yannick Souami, Feriel USTHB LRIA Laboratory BP 32 El Alia Bab Ezzouar Algiers16111 Algeria Université de Bourgogne LE2I UMR CNRS 6306 Dijon cedex21000 France
This paper describes a novel methodology for automated recognition of high-level activities. A key aspect of our framework relies on the concept of co-occurring visual words for describing interactions between several... 详细信息
来源: 评论
DSRNA: Differentiable Search of Robust Neural Architectures
DSRNA: Differentiable Search of Robust Neural Architectures
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hosseini, Ramtin Yang, Xingyi Xie, Pengtao Univ Calif San Diego La Jolla CA 92093 USA
In deep learning applications, the architectures of deep neural networks are crucial in achieving high accuracy. Many methods have been proposed to search for high-performance neural architectures automatically. Howev... 详细信息
来源: 评论
Explicit Occlusion Modeling for 3D Object Class Representations
Explicit Occlusion Modeling for 3D Object Class Representati...
收藏 引用
26th IEEE conference on computer vision and pattern recognition (CVPR)
作者: Zia, M. Zeeshan Stark, Michael Schindler, Konrad Swiss Fed Inst Technol Photogrammetry & Remote Sensing Zurich Switzerland Stanford Univ Stanford CA 94305 USA Max Planck Inst Informat Saarbrucken Germany
Despite the success of current state-of-the-art object class detectors, severe occlusion remains a major challenge. This is particularly true for more geometrically expressive 3D object class representations. While th... 详细信息
来源: 评论
Are Multimodal Transformers Robust to Missing Modality?
Are Multimodal Transformers Robust to Missing Modality?
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Ma, Mengmeng Ren, Jian Zhao, Long Testuggine, Davide Peng, Xi Univ Delaware Newark DE 19716 USA Snap Inc Santa Monica CA USA Google Mountain View CA 94043 USA
Multimodal data collected from the real world are often imperfect due to missing modalities. Therefore multimodal models that are robust against modal-incomplete data are highly preferred. Recently, Transformer models... 详细信息
来源: 评论
Spatio-temporal Relation Modeling for Few-shot Action recognition
Spatio-temporal Relation Modeling for Few-shot Action Recogn...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Thatipelli, Anirudh Narayan, Sanath Khan, Salman Anwer, Rao Muhammad Khan, Fahad Shahbaz Ghanem, Bernard Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates Aalto Univ Espoo Finland Australian Natl Univ Canberra ACT Australia Linkoping Univ CVL Linkoping Sweden King Abdullah Univ Sci & Technol Thuwal Saudi Arabia
We propose a novel few-shot action recognition framework, STRM, which enhances class-specific feature discriminability while simultaneously learning higher-order temporal representations. The focus of our approach is ... 详细信息
来源: 评论
Layerwise Optimization by Gradient Decomposition for Continual Learning
Layerwise Optimization by Gradient Decomposition for Continu...
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tang, Shixiang Chen, Dapeng Zhu, Jinguo Yu, Shijie Ouyang, Wanli Univ Sydney SenseTime Comp Vis Grp Sydney NSW Australia Xi An Jiao Tong Univ Xian Peoples R China Sensetime Grp Ltd Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China SenseTime Sydney NSW Australia
Deep neural networks achieve state-of-the-art and sometimes super-human performance across various domains. However, when learning tasks sequentially, the networks easily forget the knowledge of previous tasks, known ... 详细信息
来源: 评论
Sequential Graph Convolutional Network for Active Learning
Sequential Graph Convolutional Network for Active Learning
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Caramalau, Razvan Bhattarai, Binod Kim, Tae-Kyun Imperial Coll London London England Korea Adv Inst Sci & Technol Daejeon South Korea
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN). Each images feature from a pool of data represents a node in the graph and the edges encode their si... 详细信息
来源: 评论
Edit One for All: Interactive Batch Image Editing
Edit One for All: Interactive Batch Image Editing
收藏 引用
IEEE/CVF conference on computer vision and pattern recognition (CVPR)
作者: Thao Nguyen Ojha, Utkarsh Li, Yuheng Liu, Haotian Lee, Yong Jae Univ Wisconsin Madison Madison WI 53707 USA
In recent years, image editing has advanced remarkably. With increased human control, it is now possible to edit an image in a plethora of ways;from specifying in text what we want to change, to straight up dragging t... 详细信息
来源: 评论