咨询与建议

限定检索结果

文献类型

  • 3,447 篇 会议
  • 477 篇 期刊文献
  • 88 册 图书
  • 17 篇 学位论文

馆藏范围

  • 4,030 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 2,827 篇 工学
    • 1,698 篇 计算机科学与技术...
    • 851 篇 软件工程
    • 587 篇 测绘科学与技术
    • 577 篇 电气工程
    • 475 篇 信息与通信工程
    • 394 篇 光学工程
    • 279 篇 控制科学与工程
    • 181 篇 仪器科学与技术
    • 156 篇 机械工程
    • 144 篇 航空宇航科学与技...
    • 132 篇 土木工程
    • 128 篇 环境科学与工程(可...
    • 127 篇 建筑学
    • 125 篇 电子科学与技术(可...
    • 115 篇 生物工程
    • 93 篇 化学工程与技术
    • 66 篇 生物医学工程(可授...
    • 48 篇 农业工程
  • 1,519 篇 理学
    • 891 篇 物理学
    • 415 篇 数学
    • 152 篇 统计学(可授理学、...
    • 149 篇 地球物理学
    • 134 篇 生物学
    • 105 篇 化学
    • 57 篇 地理学
    • 54 篇 大气科学
  • 713 篇 医学
    • 699 篇 临床医学
  • 361 篇 管理学
    • 232 篇 图书情报与档案管...
    • 146 篇 管理科学与工程(可...
  • 102 篇 农学
    • 64 篇 作物学
  • 27 篇 军事学
  • 21 篇 艺术学
  • 14 篇 法学
  • 11 篇 经济学
  • 6 篇 教育学
  • 3 篇 文学

主题

  • 931 篇 remote sensing
  • 480 篇 pattern recognit...
  • 375 篇 image processing
  • 241 篇 image segmentati...
  • 236 篇 feature extracti...
  • 128 篇 satellites
  • 114 篇 image recognitio...
  • 113 篇 image analysis
  • 112 篇 deep learning
  • 111 篇 object detection
  • 106 篇 image classifica...
  • 101 篇 computer vision
  • 90 篇 training
  • 88 篇 image fusion
  • 86 篇 image resolution
  • 83 篇 image reconstruc...
  • 82 篇 synthetic apertu...
  • 78 篇 neural networks
  • 74 篇 image edge detec...
  • 71 篇 artificial intel...

机构

  • 41 篇 wuhan univ sch r...
  • 16 篇 school of remote...
  • 16 篇 school of remote...
  • 16 篇 state key labora...
  • 13 篇 institute of ima...
  • 13 篇 huazhong univ sc...
  • 13 篇 chinese acad sci...
  • 13 篇 chinese acad sci...
  • 11 篇 image processing...
  • 10 篇 chinese acad sci...
  • 9 篇 institute of rem...
  • 9 篇 wuhan univ sch r...
  • 8 篇 tsinghua univers...
  • 8 篇 natl disaster re...
  • 8 篇 chinese acad sci...
  • 8 篇 wuhan univ state...
  • 8 篇 beijing institut...
  • 8 篇 内蒙古科技大学
  • 8 篇 swiss fed inst t...
  • 8 篇 college of infor...

作者

  • 15 篇 schindler konrad
  • 15 篇 tian jinwen
  • 12 篇 zhang tianxu
  • 12 篇 anon
  • 11 篇 chen zhong
  • 11 篇 pan chunhong
  • 11 篇 zhang bing
  • 11 篇 jiao licheng
  • 11 篇 cao zhiguo
  • 11 篇 ping guo
  • 11 篇 zhang jianqing
  • 10 篇 zhang jq
  • 10 篇 huang he
  • 9 篇 yang jie
  • 8 篇 fang tao
  • 8 篇 cai chao
  • 8 篇 ding mingyue
  • 8 篇 yang weidong
  • 8 篇 chunhong pan
  • 8 篇 zhang jie

语言

  • 3,803 篇 英文
  • 112 篇 其他
  • 112 篇 中文
  • 3 篇 俄文
  • 3 篇 土耳其文
  • 1 篇 法文
检索条件"任意字段=Conference on Image Processing and Pattern Recognition in Remote Sensing"
4031 条 记 录,以下是21-30 订阅
排序:
Detecting Out-Of-Distribution Earth Observation images with Diffusion Models
Detecting Out-Of-Distribution Earth Observation Images with ...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Le Bellier, Georges Audebert, Nicolas Cnam CEDRIC EA4629 F-75141 Paris France Univ Gustave Eiffel ENSG IGN LASTIG F-94160 St Mande France
Earth Observation imagery can capture rare and unusual events, such as disasters and major landscape changes, whose visual appearance contrasts with the usual observations. Deep models trained on common remote sensing... 详细信息
来源: 评论
Landslide extraction model for remote sensing images based on improved DeepLabv3+
Landslide extraction model for remote sensing images based o...
收藏 引用
2024 International conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Wu, Yanling Lang, Wenhui School of Computer Science and Information Engineering Hefei University of Technology Hefei230601 China
In order to realize the accurate recognition of landslides in remote sensing images, an improved DeepLabv3+ landslide extraction model is proposed in this paper.(1) Hybrid Module and Attention Module based CSPNet (HA-... 详细信息
来源: 评论
GeoChat : Grounded Large Vision-Language Model for remote sensing
GeoChat : Grounded Large Vision-Language Model for Remote Se...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Kuckreja, Kartik Danish, Muhammad Sohail Naseer, Muzammal Das, Abhijit Khan, Salman Khan, Fahad Shahbaz Mohamed bin Zayed Univ AI Abu Dhabi U Arab Emirates Birla Inst Technol & Sci Hyderabad India Australian Natl Univ Canberra ACT Australia Linkoping Univ Linkoping Sweden
Recent advancements in Large Vision-Language Models (VLMs) have shown great promise in natural image domains, allowing users to hold a dialogue about given visual content. However, such general-domain VLMs perform poo...
来源: 评论
A novel CNN-Transformer network for cloud detection in remote sensing image
A novel CNN-Transformer network for cloud detection in remot...
收藏 引用
2024 International conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Ai, Xinkai Sun, Lin College of Geodesy and Geomatics Shandong University of Science and Technology Shandong Province Qingdao266590 China
Convolutional neural networks (CNNs) are the mainstream model for extracting rich features in deep learning-driven studies on cloud detection for remote sensing images. However, due to the limitation of receptive fiel... 详细信息
来源: 评论
Rethinking Transformers Pre-training for Multi-Spectral Satellite imagery
Rethinking Transformers Pre-training for Multi-Spectral Sate...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Noman, Mubashir Naseer, Muzammal Cholakkal, Hisham Anwar, Rao Muhammad Khan, Salman Khan, Fahad Shahbaz Mohamed bin Zayed Univ AI Abu Dhabi U Arab Emirates Australian Natl Univ Canberra ACT Australia Linkoping Univ Linkoping Sweden
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks by pre-training on large amount of unlabelled data. Such pre-training tech... 详细信息
来源: 评论
HSDFormer: an improved transformer for remote sensing image semantic segmentation
HSDFormer: an improved transformer for remote sensing image ...
收藏 引用
2024 International conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Bai, Yang Gao, Suixiang University of Chinese Academy of Sciences Beijing100049 China University of Chinese Academy of Sciences Zhongguancun Laboratory Beijing100049 China
The extraction of building locations is crucial in the field of remote sensing, commonly applied in tasks such as emergency response, urban planning, and environmental monitoring. Existing methods often employ convolu... 详细信息
来源: 评论
Content-Adaptive Non-Local Convolution for remote sensing Pansharpening
Content-Adaptive Non-Local Convolution for Remote Sensing Pa...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Duan, Yule Wu, Xiao Deng, Haoyu Deng, Liang-Jian Univ Elect Sci & Technol China Hefei Peoples R China
Currently, machine learning-based methods for remote sensing pansharpening have progressed rapidly. However, existing pansharpening methods often do not fully exploit differentiating regional information in non-local ... 详细信息
来源: 评论
Learnable Prompt for Few-Shot Semantic Segmentation in remote sensing Domain
Learnable Prompt for Few-Shot Semantic Segmentation in Remot...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Immanuel, Steve Andreas Sinulingga, Hagai Raja TelePIX Seoul South Korea
Few-shot segmentation is a task to segment objects or regions of novel classes within an image given only a few annotated examples. In the generalized setting, the task extends to segment both the base and the novel c... 详细信息
来源: 评论
SPECTRAL-AWARE DEEP NETWORKS FOR OBJECT DETECTION IN HYPERSPECTRAL imageS WITH CLOUD INTERFERENCE  24
SPECTRAL-AWARE DEEP NETWORKS FOR OBJECT DETECTION IN HYPERSP...
收藏 引用
1st International conference on image processing Machine Learning and pattern recognition
作者: Zhang, Ying Zeng, Xia Zhang, Hongtao Xu, Meng Shenzhen Univ Shenzhen Peoples R China Beijing Inst Astronaut Syst Engn Beijing Peoples R China
Hyperspectral object detection (HOD) aims to identify and locate multiple objects in a scene using hyperspectral images (HSIs). While much research has focused on hyperspectral target detection (HTD) at the pixel leve... 详细信息
来源: 评论
D-CANet: Diverse class-aware coding and decoding structure network for semantic segmentation of high-resolution remote sensing images
D-CANet: Diverse class-aware coding and decoding structure n...
收藏 引用
2024 International conference on image, Signal processing, and pattern recognition, ISPP 2024
作者: Yuan, Zhengwu Shao, Wen Chen, Qiang Ke, Yingqi College of Computer Science and Technology Chongqing University of Posts and Telecommunication Chongqing China
The substantial scale variation and intra-class diversity within remote sensing imagery pose significant challenges for semantic segmentation, rendering methods developed for natural images inapplicable. These challen... 详细信息
来源: 评论