咨询与建议

限定检索结果

文献类型

  • 3,458 篇 会议
  • 483 篇 期刊文献
  • 88 册 图书
  • 16 篇 学位论文

馆藏范围

  • 4,046 篇 电子文献
  • 3 种 纸本馆藏

日期分布

学科分类号

  • 2,843 篇 工学
    • 1,715 篇 计算机科学与技术...
    • 860 篇 软件工程
    • 589 篇 测绘科学与技术
    • 585 篇 电气工程
    • 486 篇 信息与通信工程
    • 392 篇 光学工程
    • 284 篇 控制科学与工程
    • 182 篇 仪器科学与技术
    • 157 篇 机械工程
    • 144 篇 航空宇航科学与技...
    • 131 篇 电子科学与技术(可...
    • 131 篇 土木工程
    • 129 篇 环境科学与工程(可...
    • 126 篇 建筑学
    • 115 篇 生物工程
    • 94 篇 化学工程与技术
    • 67 篇 生物医学工程(可授...
    • 48 篇 农业工程
  • 1,530 篇 理学
    • 899 篇 物理学
    • 424 篇 数学
    • 151 篇 地球物理学
    • 151 篇 统计学(可授理学、...
    • 134 篇 生物学
    • 108 篇 化学
    • 57 篇 地理学
    • 54 篇 大气科学
  • 718 篇 医学
    • 703 篇 临床医学
  • 365 篇 管理学
    • 233 篇 图书情报与档案管...
    • 148 篇 管理科学与工程(可...
  • 102 篇 农学
    • 64 篇 作物学
  • 26 篇 军事学
  • 21 篇 艺术学
  • 14 篇 法学
  • 11 篇 经济学
  • 6 篇 教育学
  • 3 篇 文学

主题

  • 932 篇 remote sensing
  • 482 篇 pattern recognit...
  • 377 篇 image processing
  • 244 篇 image segmentati...
  • 235 篇 feature extracti...
  • 128 篇 satellites
  • 115 篇 image recognitio...
  • 113 篇 image analysis
  • 112 篇 object detection
  • 112 篇 deep learning
  • 106 篇 image classifica...
  • 101 篇 computer vision
  • 90 篇 training
  • 88 篇 image fusion
  • 85 篇 image resolution
  • 84 篇 synthetic apertu...
  • 83 篇 image reconstruc...
  • 78 篇 neural networks
  • 74 篇 image edge detec...
  • 72 篇 artificial intel...

机构

  • 41 篇 wuhan univ sch r...
  • 16 篇 school of remote...
  • 16 篇 institute of ima...
  • 16 篇 school of remote...
  • 16 篇 state key labora...
  • 13 篇 huazhong univ sc...
  • 13 篇 chinese acad sci...
  • 13 篇 chinese acad sci...
  • 11 篇 image processing...
  • 11 篇 college of infor...
  • 10 篇 chinese acad sci...
  • 9 篇 institute of rem...
  • 9 篇 wuhan univ sch r...
  • 8 篇 tsinghua univers...
  • 8 篇 natl disaster re...
  • 8 篇 institute of ima...
  • 8 篇 chinese acad sci...
  • 8 篇 wuhan univ state...
  • 8 篇 beijing institut...
  • 8 篇 knowledge engine...

作者

  • 15 篇 schindler konrad
  • 15 篇 tian jinwen
  • 14 篇 yang jie
  • 12 篇 zhang tianxu
  • 12 篇 anon
  • 11 篇 chen zhong
  • 11 篇 pan chunhong
  • 11 篇 zhang bing
  • 11 篇 jiao licheng
  • 11 篇 cao zhiguo
  • 11 篇 ping guo
  • 11 篇 zhang jianqing
  • 10 篇 zhang jq
  • 10 篇 huang he
  • 8 篇 fang tao
  • 8 篇 cai chao
  • 8 篇 ding mingyue
  • 8 篇 yang weidong
  • 8 篇 chunhong pan
  • 8 篇 zhang jie

语言

  • 3,725 篇 英文
  • 204 篇 其他
  • 117 篇 中文
  • 3 篇 俄文
  • 3 篇 土耳其文
  • 1 篇 法文
检索条件"任意字段=Conference on Image Processing and Pattern Recognition in Remote Sensing"
4047 条 记 录,以下是411-420 订阅
排序:
Deep image Interpolation: A Unified Unsupervised Framework for Pansharpening
Deep Image Interpolation: A Unified Unsupervised Framework f...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Gao, Jianhao Li, Jie Su, Xin Jiang, Menghui Yuan, Qiangqiang Wuhan Univ Wuhan Peoples R China
Pansharpening, whose aim is to acquire high resolution multispectral data (HRMS) by the fusion of low resolution multispectral data (LRMS) and panchromatic data (PAN), is a specific mission of spatial-spectral fusion ... 详细信息
来源: 评论
Self-supervised Vision Transformers for Land-cover Segmentation and Classification
Self-supervised Vision Transformers for Land-cover Segmentat...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Scheibenreif, Linus Hanna, Joelle Mommert, Michael Borth, Damian Univ St Gallen AIML Lab Sch Comp Sci Rosenbergstr 30 St Gallen Switzerland
Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use ... 详细信息
来源: 评论
Dualswin-Ynet: A Novel Bimodal Fusion Network for Ship Detection in remote sensing images  27th
Dualswin-Ynet: A Novel Bimodal Fusion Network for Ship Dete...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Chen, Dongdong Ju, Rusheng Liu, Xiaoyang Liu, Jiyuan Zhang, Jun Qiu, Sihang College of Systems Engineering National University of Defense Technology No. 109 Deya Road Kaifu District Changsha China
Ship detection in remote sensing images has a wide range of research needs in both military and civilian applications. Traditional object detection algorithms rely solely on optical images as input, which are suscepti... 详细信息
来源: 评论
A novel sarnede method for real-time ship detection from synthetic aperture radar image
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第12期81卷 16921-16944页
作者: Raj, Anil J. Idicula, Sumam Mary Paul, Binu Cochin Univ Sci & Technol Dept Comp Sci Kochi Kerala India Cochin Univ Sci & Technol Sch Engn Div Elect Engn Kochi Kerala India
Deep learning-based ship detection from SAR data is one of the challenging problems in the remote sensing area. Also, SAR ship detection is precise object detection and pattern recognition task under the computer visi... 详细信息
来源: 评论
Multi-Scale Mixed Pixel Network for remote sensing image Super-Resolution
Multi-Scale Mixed Pixel Network for Remote Sensing Image Sup...
收藏 引用
pattern recognition and Artificial Intelligence (PRAI), International conference on
作者: He Yang Xun Ji Xu Wang Shijie Chen School of Marine Electrical Engineering Dalian Maritime University Dalian Liaoning China
Deep learning-based image super-resolution (SR) technology has gained extensive attention in the remote sensing community, which aims to reconstruct the abundant details of target images. However, the practical applic... 详细信息
来源: 评论
High-speed and Low-latency 3D sensing with a Parallel-bus pattern  10
High-speed and Low-latency 3D Sensing with a Parallel-bus Pa...
收藏 引用
International conference on 3D Vision (3DV)
作者: Miyashita, Leo Tabata, Satoshi Ishikawa, Masatoshi Univ Tokyo 7-3-1 HongoBunkyo Ku Tokyo Japan Tokyo Univ Sci 1-3 KagurazakaShjinjuku Ku Tokyo Japan
High-speed 3D shape sensing is an essential technology for three-dimensional recognition and manipulation in dynamic scenes. However, conventional high-speed sensing methods mainly focus on the image capturing speed a... 详细信息
来源: 评论
Self-Supervised Learning of remote sensing Scene Representations Using Contrastive Multiview Coding
Self-Supervised Learning of Remote Sensing Scene Representat...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Stojnic, Vladan Risojevic, Vladimir Univ Banja Luka Fac Elect Engn Banja Luka Bosnia & Herceg
In recent years self-supervised learning has emerged as a promising candidate for unsupervised representation learning. In the visual domain its applications are mostly studied in the context of images of natural scen... 详细信息
来源: 评论
Self-Supervised Material and Texture Representation Learning for remote sensing Tasks
Self-Supervised Material and Texture Representation Learning...
收藏 引用
IEEE/CVF conference on Computer Vision and pattern recognition (CVPR)
作者: Akiva, Peri Purri, Matthew Leotta, Matthew Rutgers State Univ New Brunswick NJ 08854 USA Kitware Inc Clifton Pk NY USA
Self-supervised learning aims to learn image feature representations without the usage of manually annotated labels. It is often used as a precursor step to obtain useful initial network weights which contribute to fa... 详细信息
来源: 评论
A fast bundle adjustment method based on track selection  4
A fast bundle adjustment method based on track selection
收藏 引用
4th International conference on Computer Vision and pattern Analysis, ICCPA 2024
作者: Liu, Changwei Xiong, Pingfan Yang, Luman Chen, Song Hu, Jinquan School of Remote Sensing and Information Engineering Wuhan University Hubei Wuhan430072 China School of Geodesy and Geomatics Wuhan University Hubei Wuhan430072 China Guangdon Shenzhen518000 China Wuhan Tianjihang Information Technology Co. Ltd. Hubei Wuhan430074 China
Bundle adjustment is the core of the Structure from Motion algorithm, and it is also a very time-consuming part, in which redundant observations and initial parameter values with large errors increase the time consump... 详细信息
来源: 评论
Approaching semi-supervised collaborative learning model for remote sensing image analysis
Approaching semi-supervised collaborative learning model for...
收藏 引用
2022 RIVF International conference on Computing and Communication Technologies, RIVF 2022
作者: Do, Viet Duc Mai, Dinh Sinh Ngo, Long Thanh Le Quy Don Technical University Dept. Information Technology Hanoi Viet Nam Institute of Techniques for Special Engineering Le Quy Don Technical University Hanoi Viet Nam
remote sensing image data often has many advantages in mapping, target recognition, object tracking, and so on. However, remote sensing image data often face problems such as big data, multiple dimensions, and time se... 详细信息
来源: 评论