咨询与建议

限定检索结果

文献类型

  • 663 篇 会议
  • 23 册 图书
  • 22 篇 期刊文献

馆藏范围

  • 708 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 501 篇 工学
    • 333 篇 计算机科学与技术...
    • 162 篇 软件工程
    • 96 篇 测绘科学与技术
    • 93 篇 电气工程
    • 89 篇 信息与通信工程
    • 72 篇 光学工程
    • 52 篇 控制科学与工程
    • 28 篇 建筑学
    • 28 篇 土木工程
    • 27 篇 化学工程与技术
    • 27 篇 航空宇航科学与技...
    • 26 篇 机械工程
    • 23 篇 仪器科学与技术
    • 22 篇 生物工程
    • 21 篇 电子科学与技术(可...
    • 19 篇 生物医学工程(可授...
    • 15 篇 环境科学与工程(可...
    • 12 篇 交通运输工程
    • 12 篇 农业工程
  • 226 篇 理学
    • 129 篇 物理学
    • 83 篇 数学
    • 26 篇 化学
    • 26 篇 统计学(可授理学、...
    • 24 篇 生物学
    • 10 篇 地理学
    • 10 篇 地球物理学
  • 127 篇 医学
    • 125 篇 临床医学
  • 60 篇 管理学
    • 43 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
  • 15 篇 农学
    • 13 篇 作物学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 3 篇 经济学
  • 2 篇 法学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 194 篇 remote sensing
  • 105 篇 pattern recognit...
  • 78 篇 image processing
  • 37 篇 image segmentati...
  • 31 篇 feature extracti...
  • 25 篇 artificial intel...
  • 25 篇 satellites
  • 19 篇 object detection
  • 19 篇 machine learning
  • 18 篇 training
  • 17 篇 image fusion
  • 17 篇 data mining
  • 17 篇 image analysis
  • 16 篇 image classifica...
  • 16 篇 computer vision
  • 16 篇 image resolution
  • 14 篇 image edge detec...
  • 14 篇 robustness
  • 13 篇 deep learning
  • 13 篇 remote sensing i...

机构

  • 6 篇 tsinghua univers...
  • 6 篇 dalian universit...
  • 6 篇 image processing...
  • 5 篇 university of te...
  • 5 篇 indian institute...
  • 5 篇 university of sy...
  • 5 篇 sun yat-sen univ...
  • 5 篇 institute of aut...
  • 5 篇 institute of aut...
  • 5 篇 shenzhen univers...
  • 5 篇 college of infor...
  • 4 篇 institute of ima...
  • 4 篇 hong kong baptis...
  • 4 篇 southern univers...
  • 3 篇 univ arizona col...
  • 3 篇 mks imaging tech...
  • 3 篇 university of el...
  • 3 篇 peking univ inst...
  • 3 篇 indian institute...
  • 3 篇 national laborat...

作者

  • 8 篇 anon
  • 8 篇 chunhong pan
  • 7 篇 ping guo
  • 5 篇 zhaoxiang zhang
  • 5 篇 hui huang
  • 5 篇 balasubramanian ...
  • 5 篇 jing dong
  • 5 篇 tieniu tan
  • 5 篇 jiwen lu
  • 5 篇 risheng liu
  • 5 篇 wanli ouyang
  • 5 篇 min xu
  • 5 篇 huchuan lu
  • 4 篇 qian yin
  • 4 篇 junwei han
  • 4 篇 jianhuang lai
  • 4 篇 pan chunhong
  • 4 篇 zhang jie
  • 4 篇 yike guo
  • 4 篇 jianguo zhang

语言

  • 675 篇 英文
  • 29 篇 其他
  • 4 篇 中文
检索条件"任意字段=Conference on Image Processing and Pattern Recognition in Remote Sensing II"
708 条 记 录,以下是291-300 订阅
排序:
URBAN ROAD EXTRACTION VIA GRAPH CUTS BASED PROBABILITY PROPAGATION
URBAN ROAD EXTRACTION VIA GRAPH CUTS BASED PROBABILITY PROPA...
收藏 引用
IEEE International conference on image processing
作者: Guangliang Cheng Ying Wang Yongchao Gong Feiyun Zhu Chunhong Pan National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science
In this paper, we propose a graph cuts (GC) based probability propagation approach to automatically extract road network from complex remote sensing images. First, the support vector machine (SVM) classifier with a si... 详细信息
来源: 评论
pattern recognition: Advanced development, techniques and application for image retrieval
Pattern recognition: Advanced development, techniques and ap...
收藏 引用
International conference on Communication and Network Technologies (ICCNT)
作者: A.A. Khodaskar S. A. Ladhake Computer Science and Engineering SIPNA COET Amravati India
Objective of our paper is to discuss latest pattern recognition applications, techniques and development. pattern recognition has been demanding field from many years. We are also discuss driving force behind its swif... 详细信息
来源: 评论
Possibility theory for supervised classification of remotely sensed images: A study case in an urban area in Algeria
Possibility theory for supervised classification of remotely...
收藏 引用
International conference of Soft Computing and pattern recognition (SOCPAR)
作者: Radja Kheddam Aichouche Belhadj-Aissa Image processing and radiation laboratory University of science and technology (USTHB) Algiers Algeria
In this paper we present a possibilistic classifier of multispectral remotely sensed images. This classifier developed in the framework of possibility theory is based on a fusion process using several kinds of combina... 详细信息
来源: 评论
Mystery behind similarity measures mse and SSIM
Mystery behind similarity measures mse and SSIM
收藏 引用
IEEE International conference on image processing
作者: Gintautas Palubinskas German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen Wessling Germany
Similarity or distance measures play an important role in various pattern recognition applications such as classification, clustering, change detection, information retrieval, energy minimization and optimization prob... 详细信息
来源: 评论
Multi-task deep learning for image understanding
Multi-task deep learning for image understanding
收藏 引用
International conference of Soft Computing and pattern recognition (SOCPAR)
作者: Bo Yu Ian Lane Carnegie Mellon University CA Graduate University of Chinese Academy of Sciences Beijing China The State Key Laboratory of Remote Sensing Science Chinese Academy of Sciences Beijing China
Deep learning models can obtain state-of-the-art performance across many speech and image processing tasks, often significantly outperforming earlier methods. In this paper, we attempt to further improve the performan... 详细信息
来源: 评论
Local Label Probability Propagation for Hyperspectral image Classification
Local Label Probability Propagation for Hyperspectral Image ...
收藏 引用
International conference on pattern recognition
作者: Haichang Li Jiangyong Duan Shiming Xiang Lingfeng Wang Chunhong Pan Institute of Automation Chinese Academy of Sciences
Classification of hyper spectral images is an important issue in remote sensing image processing systems. Hyper spectral images have advantages in pixel-wise classification owing to the high spectral resolution. Howev... 详细信息
来源: 评论
Learning an image-based motion context for multiple people tracking
Learning an image-based motion context for multiple people t...
收藏 引用
IEEE conference on Computer Vision and pattern recognition
作者: Laura Leal-Taixe Michele Fenzi Alina Kuznetsova Bodo Rosenhahn Silvio Savarese Photogrammetry and Remote Sensing ETH Zurich Institute for Information Processing Leibniz University Hannover Computational Vision and Geometry Lab Stanford University
We present a novel method for multiple people tracking that leverages a generalized model for capturing interactions among individuals. At the core of our model lies a learned dictionary of interaction feature strings... 详细信息
来源: 评论
FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
收藏 引用
IEEE International conference on image processing
作者: Mohammadreza Babaee Reza Bahmanyar Gerhard Rigoll Mihai Datcu Institute for Human-Machine Communication Technische Universitat Munchen Remote Sensing Technology Institute (IMF) German Aerospace Center (DLR)
Dramatic growth in the volume of data made a compact and informative representation of the data highly demanded in computer vision, information retrieval, and pattern recognition. Non-negative Matrix Factorization (NM... 详细信息
来源: 评论
Mean-shift based object detection and clustering from high resolution remote sensing imagery
Mean-shift based object detection and clustering from high r...
收藏 引用
4th National conference on Computer Vision, pattern recognition, image processing and Graphics (NCVPRIPG)
作者: SushmaLeela, T. chandrakanth, R. Saibaba, J. Varadan, Geeta Mohan, Sambhu S. ADRIN Department of Space Hyderabad India Amrita Viswa Vidyapeetham Amrita School of Engineering Coimbatore India
Object detection from remote sensing images has inherent difficulties due to cluttered backgrounds and noisy regions from the urban area in high resolution images. Detection of objects with regular geometry, such as c... 详细信息
来源: 评论
remote sensing Object recognition Based on Transfer Learning
Remote Sensing Object Recognition Based on Transfer Learning
收藏 引用
10th International conference on Fuzzy Systems and Knowledge Discovery (FSKD)
作者: Dan, Zhiping Sang, Nong Chen, Yanfei Chen, Xi Huazhong Univ Sci & Technol Sch Automat Wuhan 430074 Peoples R China
The deviation of an object's real data distribution from the known training data distribution would lead to low reliability of object recognition. To tackle this problem for remote sensing (RS) images, we propose ... 详细信息
来源: 评论