咨询与建议

限定检索结果

文献类型

  • 662 篇 会议
  • 23 册 图书
  • 22 篇 期刊文献

馆藏范围

  • 707 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 500 篇 工学
    • 332 篇 计算机科学与技术...
    • 161 篇 软件工程
    • 96 篇 测绘科学与技术
    • 93 篇 电气工程
    • 88 篇 信息与通信工程
    • 71 篇 光学工程
    • 52 篇 控制科学与工程
    • 28 篇 建筑学
    • 28 篇 土木工程
    • 27 篇 化学工程与技术
    • 27 篇 航空宇航科学与技...
    • 26 篇 机械工程
    • 23 篇 仪器科学与技术
    • 22 篇 生物工程
    • 21 篇 电子科学与技术(可...
    • 19 篇 生物医学工程(可授...
    • 15 篇 环境科学与工程(可...
    • 12 篇 交通运输工程
    • 12 篇 农业工程
  • 225 篇 理学
    • 128 篇 物理学
    • 83 篇 数学
    • 26 篇 化学
    • 26 篇 统计学(可授理学、...
    • 24 篇 生物学
    • 10 篇 地理学
    • 10 篇 地球物理学
  • 127 篇 医学
    • 125 篇 临床医学
  • 60 篇 管理学
    • 43 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
  • 15 篇 农学
    • 13 篇 作物学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 3 篇 经济学
  • 2 篇 法学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 194 篇 remote sensing
  • 105 篇 pattern recognit...
  • 78 篇 image processing
  • 37 篇 image segmentati...
  • 31 篇 feature extracti...
  • 25 篇 artificial intel...
  • 25 篇 satellites
  • 19 篇 object detection
  • 19 篇 machine learning
  • 18 篇 training
  • 17 篇 image fusion
  • 17 篇 data mining
  • 17 篇 image analysis
  • 16 篇 image classifica...
  • 16 篇 computer vision
  • 16 篇 image resolution
  • 14 篇 image edge detec...
  • 14 篇 robustness
  • 13 篇 deep learning
  • 13 篇 remote sensing i...

机构

  • 6 篇 tsinghua univers...
  • 6 篇 image processing...
  • 5 篇 university of te...
  • 5 篇 indian institute...
  • 5 篇 dalian universit...
  • 5 篇 university of sy...
  • 5 篇 institute of aut...
  • 5 篇 institute of aut...
  • 5 篇 shenzhen univers...
  • 5 篇 college of infor...
  • 4 篇 institute of ima...
  • 4 篇 sun yat-sen univ...
  • 4 篇 hong kong baptis...
  • 4 篇 southern univers...
  • 3 篇 univ arizona col...
  • 3 篇 mks imaging tech...
  • 3 篇 university of el...
  • 3 篇 peking univ inst...
  • 3 篇 indian institute...
  • 3 篇 national laborat...

作者

  • 8 篇 anon
  • 8 篇 chunhong pan
  • 7 篇 ping guo
  • 5 篇 zhaoxiang zhang
  • 5 篇 hui huang
  • 5 篇 balasubramanian ...
  • 5 篇 jing dong
  • 5 篇 tieniu tan
  • 5 篇 jiwen lu
  • 5 篇 risheng liu
  • 5 篇 wanli ouyang
  • 5 篇 min xu
  • 5 篇 huchuan lu
  • 4 篇 qian yin
  • 4 篇 junwei han
  • 4 篇 jianhuang lai
  • 4 篇 pan chunhong
  • 4 篇 zhang jie
  • 4 篇 yike guo
  • 4 篇 jianguo zhang

语言

  • 688 篇 英文
  • 15 篇 其他
  • 4 篇 中文
检索条件"任意字段=Conference on Image Processing and Pattern Recognition in Remote Sensing II"
707 条 记 录,以下是471-480 订阅
排序:
Exploitation of complementary sensors for precise ground-registration of sensed objects
Exploitation of complementary sensors for precise ground-reg...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Cook, G Kansal, S George Mason Univ ECE Dept Fairfax VA 22030 USA
In remote sensing, one is often interested in not only ascertaining the presence of certain resources or objects of interest, but also in determining their locations. Ground registration involves locating the target i... 详细信息
来源: 评论
Mapping accuracy via spectral and structural based filtering techniques, comparisons through visual observations.
Mapping accuracy via spectral and structural based filtering...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Chockalingam, L Faculty of Information Science and Technology Multimedia University Malaysia
The data of Gunung Ledang region of Malaysia acquired through LANDSAT are considered to map certain hydrogeological features. To map these significant features, image-processing tools such as contrast enhancement, edg... 详细信息
来源: 评论
Segmentation of LANDSAT TM image using the Markov Random Field model toward a category classification of higher accuracy
Segmentation of LANDSAT TM image using the Markov Random Fie...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Kawaguchi, S Yamazaki, K Tokyo Gakugei Univ Tokyo 1848501 Japan
In category classification of remotely sensed imagery, it is important that pixels of image are classified using spatial informaton. We have implemented MRF(Markov Random Field) model for a classification of higher ac... 详细信息
来源: 评论
Integration of remote sensing, GIS and GPS techniques for dynamic monitoring of land resources in mountainous areas - A case study of Renhe District, Sichuan, China
Integration of Remote Sensing, GIS and GPS techniques for dy...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Wang, ZY Chen, XW Zhao, SH Luo, YH Peking Univ Inst Remote Sensing & GIS Beijing Peoples R China
Geometric and radiometric correction, image processing, information extraction and the integration of remote sensing, GIS and GPS in the specific approach for dynamic monitoring of land resources in mountainous areas ... 详细信息
来源: 评论
IEEE1394 and entropy reduction techniques as applied to remote sensing spacecraft communication systems
IEEE1394 and entropy reduction techniques as applied to remo...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Masini, P Julian, RL Jensen, KL Raytheon Co. (United States)
This paper describes work being done at Raytheon-Santa Barbara remote sensing (SBRS) in the area of entropy reduction of remote sensing data on the National Polar-Orbiting Operational Environmental Satellite System (N... 详细信息
来源: 评论
Removing vegetation using unsupervised fully constrained least squares linear spectral mixture analysis method in soils surveying by remote sensing
Removing vegetation using unsupervised fully constrained lea...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Luo, HX Ye, HZ Ke, YH Pan, JP Gong, JY Chen, XL SW Normal Univ Sch Resources & Environm Chongqing 400715 Peoples R China
In the region covered by variable amounts of vegetation, pixel spectra received by remotely-sensed sensor with given spatial resolution are a mixture of soil and vegetation spectra, so vegetation covering on soil infl... 详细信息
来源: 评论
Landsat TM multi-spectral classification using support vector machine method in low-hill areas
Landsat TM multi-spectral classification using support vecto...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Zhao, SH Ke, CQ Dong, XQ Li, JL Feng, XZ Peking Univ Inst Remote Sensing & GIS Beijing 100871 Peoples R China
Support vector machine (SVM) is a newly learning machine. In the paper, it applied the SVM method to research on remote sensing multi-spectral classification using Landsat TM data. It selected the typical low-hill are... 详细信息
来源: 评论
recognition of image with natural textures based on learning of information augmentation
Recognition of image with natural textures based on learning...
收藏 引用
2nd International conference on Intelligent Information processing
作者: Cheng, XY Yuan, XH Li, SQ Xian, DS Nanjing Univ Sci & Technol Dept Comp Sci Nianjing 21904 Peoples R China
The efficiency of pattern recognition depends heavily on that if feature extraction and selecting are effective. Complicated image such as medical image and remote sensing image, belong to image with natural textures,... 详细信息
来源: 评论
Comparison of pixel-based fusion between multi-spectral data and high spatial resolution data
Comparison of pixel-based fusion between multi-spectral data...
收藏 引用
conference on image processing and pattern recognition in remote sensing ii
作者: Zhao, SH Wang, ZY Dong, XQ Chen, XW Peking Univ Inst Remote Sensing & GIS Beijing 100871 Peoples R China
In the paper, experiments and analysis of three pixel-based fusion methods had been discussed. The fusion methods include IHS, PCA and Brovey transform method. The fusion experiments were carried out in two circs, tha... 详细信息
来源: 评论
A band-weighted landuse classification method for multispectral images
A band-weighted landuse classification method for multispect...
收藏 引用
conference on Computer Vision and pattern recognition
作者: Pan, CH Wu, G Prinet, V Yang, Q Ma, SD Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100864 Peoples R China
Landuse classification is an important problem in the remote sensing field. It can be used in a wide range of applications. In this paper we propose a hybrid method fusing edges and regions information for the landuse... 详细信息
来源: 评论