咨询与建议

限定检索结果

文献类型

  • 662 篇 会议
  • 23 册 图书
  • 22 篇 期刊文献

馆藏范围

  • 707 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 500 篇 工学
    • 332 篇 计算机科学与技术...
    • 161 篇 软件工程
    • 96 篇 测绘科学与技术
    • 93 篇 电气工程
    • 88 篇 信息与通信工程
    • 71 篇 光学工程
    • 52 篇 控制科学与工程
    • 28 篇 建筑学
    • 28 篇 土木工程
    • 27 篇 化学工程与技术
    • 27 篇 航空宇航科学与技...
    • 26 篇 机械工程
    • 23 篇 仪器科学与技术
    • 22 篇 生物工程
    • 21 篇 电子科学与技术(可...
    • 19 篇 生物医学工程(可授...
    • 15 篇 环境科学与工程(可...
    • 12 篇 交通运输工程
    • 12 篇 农业工程
  • 225 篇 理学
    • 128 篇 物理学
    • 83 篇 数学
    • 26 篇 化学
    • 26 篇 统计学(可授理学、...
    • 24 篇 生物学
    • 10 篇 地理学
    • 10 篇 地球物理学
  • 127 篇 医学
    • 125 篇 临床医学
  • 60 篇 管理学
    • 43 篇 图书情报与档案管...
    • 20 篇 管理科学与工程(可...
  • 15 篇 农学
    • 13 篇 作物学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 3 篇 经济学
  • 2 篇 法学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 194 篇 remote sensing
  • 105 篇 pattern recognit...
  • 78 篇 image processing
  • 37 篇 image segmentati...
  • 31 篇 feature extracti...
  • 25 篇 artificial intel...
  • 25 篇 satellites
  • 19 篇 object detection
  • 19 篇 machine learning
  • 18 篇 training
  • 17 篇 image fusion
  • 17 篇 data mining
  • 17 篇 image analysis
  • 16 篇 image classifica...
  • 16 篇 computer vision
  • 16 篇 image resolution
  • 14 篇 image edge detec...
  • 14 篇 robustness
  • 13 篇 deep learning
  • 13 篇 remote sensing i...

机构

  • 6 篇 tsinghua univers...
  • 6 篇 image processing...
  • 5 篇 university of te...
  • 5 篇 indian institute...
  • 5 篇 dalian universit...
  • 5 篇 university of sy...
  • 5 篇 institute of aut...
  • 5 篇 institute of aut...
  • 5 篇 shenzhen univers...
  • 5 篇 college of infor...
  • 4 篇 institute of ima...
  • 4 篇 sun yat-sen univ...
  • 4 篇 hong kong baptis...
  • 4 篇 southern univers...
  • 3 篇 univ arizona col...
  • 3 篇 mks imaging tech...
  • 3 篇 university of el...
  • 3 篇 peking univ inst...
  • 3 篇 indian institute...
  • 3 篇 national laborat...

作者

  • 8 篇 anon
  • 8 篇 chunhong pan
  • 7 篇 ping guo
  • 5 篇 zhaoxiang zhang
  • 5 篇 hui huang
  • 5 篇 balasubramanian ...
  • 5 篇 jing dong
  • 5 篇 tieniu tan
  • 5 篇 jiwen lu
  • 5 篇 risheng liu
  • 5 篇 wanli ouyang
  • 5 篇 min xu
  • 5 篇 huchuan lu
  • 4 篇 qian yin
  • 4 篇 junwei han
  • 4 篇 jianhuang lai
  • 4 篇 pan chunhong
  • 4 篇 zhang jie
  • 4 篇 yike guo
  • 4 篇 jianguo zhang

语言

  • 688 篇 英文
  • 15 篇 其他
  • 4 篇 中文
检索条件"任意字段=Conference on Image Processing and Pattern Recognition in Remote Sensing II"
707 条 记 录,以下是481-490 订阅
排序:
Texture detection for image analysis
收藏 引用
3rd International conference on Advances in pattern recognition
作者: Chabrier, S Emile, B Rosenberger, C Univ Orleans ENSI Bourges Lab Vis & Robot UPRES EA 2078 F-18020 Bourges France
Many applications such as image compression, pre-processing or segmentation require some information from the regions composing an image. The main objective of this paper is to define a methodology to extract some loc... 详细信息
来源: 评论
A context-sensitive technique based on Support Vector Machines for image classification
收藏 引用
1st International conference on pattern recognition and Machine Intelligence
作者: Bovolo, F Bruzzone, L Univ Trent Dept Informat & Commun Technol I-38050 Povo TN Italy
In this paper, a novel context-sensitive classification technique based on Support Vector Machines (CS-SVM) is proposed. This technique aims at exploiting the promising SVM method for classification of 2-D (or n-D) sc... 详细信息
来源: 评论
Landmark extraction, matching and processing for automated image navigation of geostationary weather satellites
Landmark extraction, matching and processing for automated i...
收藏 引用
image processing and pattern recognition in remote sensing ii
作者: Kim, Taejung Lee, Tae-Yoon Choi, Hae-Jin Dept. of Geoinformatic Eng. Inha Univ. 253 Yonghyun-Dong Nam-Gu Incheon 40-751 Korea Republic of Satellite Operation and Application Center Korea Aerospace Research Institute 45 Oun-dong Yusong-gu Daejon 305-333 Korea Republic of
This paper addresses the issue on automated registration of images from weather satellites. Traditionally, weather satellite community has employed an approach called landmark detection for automated registration. A g... 详细信息
来源: 评论
Bayesian network classification for aster data based on wavelet transformation
Bayesian network classification for aster data based on wave...
收藏 引用
International conference on Space Information Technology
作者: Li, Qiqing Cheng, Chengqi Guo, Shide Research Institute of Remote Sensing GIS Peking University 100871 China
In this study, Bayesian networks are considered to be a classifier for the remote sensing image named Aster data, which involves 15 bands. Six. bands, which have different spatial resolutions, are selected to be the a... 详细信息
来源: 评论
Extraction of tree height from large viewing angle aerial images
Extraction of tree height from large viewing angle aerial im...
收藏 引用
International conference on Space Information Technology
作者: Li, Chaoyang Yan, Guangjian Liu, Qiang Xiao, Zhiqiang Wang, Jingdi Laboratory of Pattern Recognition and Intelligent System School of Information Engineering Beijing University of Posts and Telecommunications 86-10-58809966 China State Key Laboratory of Remote Sensing Science Beijing Normal University Institute of Remote Sensing Applications Research Center for Remote Sensing School of Geography Beijing Normal University
Due to the complexity and non-regularity of tree shapes, traditional digital photogrammetry using stereo matching method is difficult to obtain the accurate tree height, This fact therefore limits the application of t... 详细信息
来源: 评论
A band-weighted landuse classification method for multispectral images
A band-weighted landuse classification method for multispect...
收藏 引用
conference on Computer Vision and pattern recognition (CVPR)
作者: Chunhong Pan Gang Wu V. Prinet Qing Yang Songde Ma National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences China
Landuse classification is an important problem in the remote sensing field. It can be used in a wide range of applications. In this paper, we propose a hybrid method fusing edges and regions information for the landus... 详细信息
来源: 评论
Textural kernel for SVM classification in remote sensing: application to forest fire detection and urban area extraction
Textural kernel for SVM classification in remote sensing: ap...
收藏 引用
IEEE International conference on image processing
作者: F. Lafarge X. Descombes J. Zerubia Ariana Project INRIA Sophia-Antipolis France
We present a textural kernel for "support vector machines" classification applied to remote sensing problems. SVMs constitute a method of supervised classification well adapted to deal with data of high dime... 详细信息
来源: 评论
A probabilistic approach for shadows modeling and detection
A probabilistic approach for shadows modeling and detection
收藏 引用
IEEE International conference on image processing
作者: N. Bouguila D. Ziou Université de Sherbrook Sherbrooke QUE Canada
The performance of a statistical image processing system depends in large part on the accuracy of the probabilistic model used. This paper presents a robust probabilistic mixture model based on the Dirichlet distribut... 详细信息
来源: 评论
A graph and PNN-based approach to image classification
A graph and PNN-based approach to image classification
收藏 引用
International conference on Machine Learning and Cybernetics (ICMLC)
作者: Jin Tang Chun-Yan Zhang Bin Luo Key Laboratory of Intelligent Computing and Signal Processing of Anhui University Hefei China
In this paper, a new image classification method is developed. This approach applies graph decomposition and probabilistic neural networks (PNN) to the task of supervised image classification. We use relational graphs... 详细信息
来源: 评论
Applications of Generalized Learning in image recognition
Applications of Generalized Learning in Image Recognition
收藏 引用
International conference on Neural Interface and Control
作者: YAO Min, JIANG Zhiwei, YI Wensheng, ZHAO Xiacming College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, P R China Department of Computer, Taizhou University, Taizhou 317000, P R China
Generalized learning model, GLM for short, is a new kind of machine learning model which fuses symbolic learning, connective learning, fuzzy learning, evolutionary learning and statistical learning together. By introd... 详细信息
来源: 评论