咨询与建议

限定检索结果

文献类型

  • 605 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 622 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 188 篇 计算机科学与技术...
    • 110 篇 电气工程
    • 89 篇 软件工程
    • 52 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 40 篇 测绘科学与技术
    • 36 篇 仪器科学与技术
    • 36 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 21 篇 核科学与技术
    • 20 篇 电子科学与技术(可...
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 242 篇 理学
    • 198 篇 物理学
    • 44 篇 数学
    • 25 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 6 篇 化学
    • 5 篇 系统科学
    • 4 篇 大气科学
  • 219 篇 医学
    • 180 篇 临床医学
    • 79 篇 特种医学
    • 13 篇 医学技术(可授医学...
    • 5 篇 基础医学(可授医学...
  • 13 篇 管理学
    • 11 篇 管理科学与工程(可...
  • 8 篇 农学
    • 5 篇 作物学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 259 篇 image reconstruc...
  • 37 篇 computed tomogra...
  • 33 篇 three-dimensiona...
  • 30 篇 reconstruction a...
  • 25 篇 training
  • 24 篇 image segmentati...
  • 24 篇 cameras
  • 23 篇 solid modeling
  • 23 篇 surface reconstr...
  • 22 篇 image restoratio...
  • 22 篇 tomography
  • 22 篇 image processing
  • 21 篇 compressed sensi...
  • 21 篇 shape
  • 21 篇 image quality
  • 18 篇 magnetic resonan...
  • 17 篇 deep learning
  • 17 篇 image resolution
  • 16 篇 biomedical imagi...
  • 16 篇 image registrati...

机构

  • 8 篇 univ canterbury ...
  • 6 篇 univ canterbury ...
  • 4 篇 dartmouth coll t...
  • 3 篇 univ rochester i...
  • 3 篇 univ n carolina ...
  • 3 篇 departamento de ...
  • 3 篇 hosp gen univ gr...
  • 2 篇 department of ra...
  • 2 篇 linkoping univ d...
  • 2 篇 peking univ peop...
  • 2 篇 department of ra...
  • 2 篇 laboratoire des ...
  • 2 篇 univ chinese aca...
  • 2 篇 siemens srl bras...
  • 2 篇 school of comput...
  • 2 篇 department of en...
  • 2 篇 unidad de medici...
  • 2 篇 washington univ ...
  • 2 篇 the technical un...
  • 2 篇 tsinghua univ de...

作者

  • 8 篇 millane rp
  • 7 篇 desco m.
  • 7 篇 anastasio mark a...
  • 5 篇 doerschuk peter ...
  • 5 篇 lambert a
  • 5 篇 fraser d
  • 4 篇 kudo hiroyuki
  • 4 篇 vaquero j. j.
  • 4 篇 millane r. p.
  • 4 篇 bouman ca
  • 4 篇 fiddy michael a.
  • 4 篇 bones philip j.
  • 4 篇 millane rick p.
  • 4 篇 tahtali murat
  • 4 篇 abella m.
  • 4 篇 zheng yili
  • 4 篇 andrew j. reader
  • 4 篇 reader andrew j.
  • 4 篇 m. desco
  • 4 篇 testorf markus e...

语言

  • 621 篇 英文
  • 1 篇 其他
检索条件"任意字段=Conference on Image Reconstruction from Incomplete Data III"
622 条 记 录,以下是101-110 订阅
排序:
JSR-NET: A DEEP NETWORK FOR JOINT SPATIAL-RADON DOMAIN CT reconstruction from incomplete data  44
JSR-NET: A DEEP NETWORK FOR JOINT SPATIAL-RADON DOMAIN CT RE...
收藏 引用
44th IEEE International conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Haimiao Dong, Bin Liu, Baodong Peking Univ Beijing Peoples R China Chinese Acad Sci Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
CT image reconstruction from incomplete data, such as sparse views and limited angle reconstruction, is an important and challenging problem in medical imaging. This work proposes a new deep convolutional neural netwo... 详细信息
来源: 评论
Self-Guided and MR-Guided Deep-Learned Post-reconstruction PET Processing
Self-Guided and MR-Guided Deep-Learned Post-Reconstruction P...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Guillaume Corda-D’Incan Julia A. Schnabel Andrew J. Reader School of Biomedical Engineering and Imaging Sciences King’s College London UK The Technical University of Munich Germany The Helmholtz Center Munich Germany
Reconstructed PET images exhibit high noise levels and low spatial resolution when shorter scan times and reduced injected doses are used. Regularisation methods such as post-reconstruction smoothing can help to impro... 详细信息
来源: 评论
Iterative Imputation of Missing data Using Auto-Encoder Dynamics  27th
Iterative Imputation of Missing Data Using Auto-Encoder Dyna...
收藏 引用
27th International conference on Neural Information Processing
作者: Smieja, Marek Kolomycki, Maciej Struski, Lukasz Juda, Mateusz Figueiredo, Mario A. T. Jagiellonian Univ Fac Math & Comp Sci Krakow Poland Cracow Univ Technol Fac Mech Engn Inst Appl Informat Krakow Poland Univ Lisbon Inst Telecomunicacoes Inst Super Tecn Lisbon Portugal
This paper introduces an approach to missing data imputation based on deep auto-encoder models, adequate to high-dimensional data exhibiting complex dependencies, such as images. The method exploits the properties of ... 详细信息
来源: 评论
A Self-Supervised Bootstrap Method for Single-image 3D Face reconstruction  19
A Self-Supervised Bootstrap Method for Single-Image 3D Face ...
收藏 引用
19th IEEE Winter conference on Applications of Computer Vision (WACV)
作者: Xing, Yifan Tewari, Rahul Mendonc, Paulo R. S. Amazon Web Serv Seattle WA 98109 USA
State-of-the-art methods for 3D reconstruction of faces from a single image require 2D-3D pairs of ground-truth data for supervision. Such data is costly to acquire, and most datasets available in the literature are r... 详细信息
来源: 评论
image reconstruction in CT from Limited-Angle Projections  10
Image Reconstruction in CT from Limited-Angle Projections
收藏 引用
10th International conference on Graphics and image Processing (ICGIP)
作者: Li, Dou Wang, Shanshan Cai, Zemin Liang, Dong Luo, Jianhua Shantou Univ Coll Engn Dept Elect Engn Shantou Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Paul C Lauterbur Res Ctr Biomed Imaging Shenzhen 518055 Peoples R China Shanghai Jiao Tong Univ Sch Aeronaut & Atronaut Shanghai 200240 Peoples R China
Limited-angle tomography has gained much interest in late years Nevertheless, image reconstruction from incomplete projections is a classic ill-posed issue in the field of computational imaging. In this paper, we prop... 详细信息
来源: 评论
data-driven Adversarial Learning for Sinogram-based Iterative Low-Dose CT image reconstruction  23
Data-driven Adversarial Learning for Sinogram-based Iterativ...
收藏 引用
23rd International conference on System Theory, Control and Computing (ICSTCC)
作者: Vizitiu, Anamaria Puiu, Andrei Reaungamornrat, Sureerat Itu, Lucian Mihai Siemens SRL Corp Technol Brasov Romania Transilvania Univ Brasov Dept Automat & Informat Technol Brasov Romania Siemens Healthineers Med Imaging Technol Princeton NJ USA
One of the most active research areas in computed tomography (CT) is to devise a strategy to reduce radiation exposure, while maintaining high image quality, required for accurate diagnosis. The recent advancements of... 详细信息
来源: 评论
RECOVERY OF SUBSPACE STRUCTURE from HIGH-RANK data WITH MISSING ENTRIES  26
RECOVERY OF SUBSPACE STRUCTURE FROM HIGH-RANK DATA WITH MISS...
收藏 引用
26th IEEE International conference on image Processing (ICIP)
作者: Carvalho, Joao Marques, Manuel Costeira, Joao P. Univ Lisbon Inst Super Tecn LARSyS Inst Syst & Robot Lisbon Portugal
We propose a method to reconstruct and cluster incomplete high-dimensional data lying in a union of low-dimensional subspaces. Exploring the sparse representation model, we jointly estimate the missing data while impo... 详细信息
来源: 评论
Deep Multimodal reconstruction of Retinal images Using Paired or Unpaired data
Deep Multimodal Reconstruction of Retinal Images Using Paire...
收藏 引用
International Joint conference on Neural Networks (IJCNN)
作者: Hervella, Alvaro S. Rouco, Jose Novo, Jorge Ortega, Marcos Univ A Coruna CITIC Res Ctr Informat & Commun Technol La Coruna Spain Univ A Coruna Dept Comp Sci La Coruna Spain
This paper explores the application of deep learning-based methods for the multimodal reconstruction of fluorescein angiography from retinography. The objective of this multimodal reconstruction is not only to estimat... 详细信息
来源: 评论
Integrating data and image Domain Deep Learning for Limited Angle Tomography using Consensus Equilibrium  17
Integrating Data and Image Domain Deep Learning for Limited ...
收藏 引用
IEEE/CVF International conference on Computer Vision (ICCV)
作者: Ghani, Muhammad Usman Karl, W. Clem Boston Univ Boston MA 02215 USA
Computed Tomography (CT) is a non-invasive imaging modality with applications ranging from healthcare to security. It reconstructs cross-sectional images of an object using a collection of projection data collected at... 详细信息
来源: 评论
Deep image reconstruction for Reducing Limited-Angle Artifacts in a Dual-Panel TOF PET
Deep Image Reconstruction for Reducing Limited-Angle Artifac...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Yusheng Li Samuel Matej University of Pennsylvania Philadelphia Pennsylvania
Dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges o... 详细信息
来源: 评论