咨询与建议

限定检索结果

文献类型

  • 605 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 622 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 360 篇 工学
    • 188 篇 计算机科学与技术...
    • 110 篇 电气工程
    • 89 篇 软件工程
    • 52 篇 生物医学工程(可授...
    • 41 篇 光学工程
    • 40 篇 测绘科学与技术
    • 36 篇 仪器科学与技术
    • 36 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 21 篇 核科学与技术
    • 20 篇 电子科学与技术(可...
    • 20 篇 生物工程
    • 18 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 航空宇航科学与技...
  • 242 篇 理学
    • 198 篇 物理学
    • 44 篇 数学
    • 25 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 6 篇 化学
    • 5 篇 系统科学
    • 4 篇 大气科学
  • 219 篇 医学
    • 180 篇 临床医学
    • 79 篇 特种医学
    • 13 篇 医学技术(可授医学...
    • 5 篇 基础医学(可授医学...
  • 13 篇 管理学
    • 11 篇 管理科学与工程(可...
  • 8 篇 农学
    • 5 篇 作物学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 259 篇 image reconstruc...
  • 37 篇 computed tomogra...
  • 33 篇 three-dimensiona...
  • 30 篇 reconstruction a...
  • 25 篇 training
  • 24 篇 image segmentati...
  • 24 篇 cameras
  • 23 篇 solid modeling
  • 23 篇 surface reconstr...
  • 22 篇 image restoratio...
  • 22 篇 tomography
  • 22 篇 image processing
  • 21 篇 compressed sensi...
  • 21 篇 shape
  • 21 篇 image quality
  • 18 篇 magnetic resonan...
  • 17 篇 deep learning
  • 17 篇 image resolution
  • 16 篇 biomedical imagi...
  • 16 篇 image registrati...

机构

  • 8 篇 univ canterbury ...
  • 6 篇 univ canterbury ...
  • 4 篇 dartmouth coll t...
  • 3 篇 univ rochester i...
  • 3 篇 univ n carolina ...
  • 3 篇 departamento de ...
  • 3 篇 hosp gen univ gr...
  • 2 篇 department of ra...
  • 2 篇 linkoping univ d...
  • 2 篇 peking univ peop...
  • 2 篇 department of ra...
  • 2 篇 laboratoire des ...
  • 2 篇 univ chinese aca...
  • 2 篇 siemens srl bras...
  • 2 篇 school of comput...
  • 2 篇 department of en...
  • 2 篇 unidad de medici...
  • 2 篇 washington univ ...
  • 2 篇 the technical un...
  • 2 篇 tsinghua univ de...

作者

  • 8 篇 millane rp
  • 7 篇 desco m.
  • 7 篇 anastasio mark a...
  • 5 篇 doerschuk peter ...
  • 5 篇 lambert a
  • 5 篇 fraser d
  • 4 篇 kudo hiroyuki
  • 4 篇 vaquero j. j.
  • 4 篇 millane r. p.
  • 4 篇 bouman ca
  • 4 篇 fiddy michael a.
  • 4 篇 bones philip j.
  • 4 篇 millane rick p.
  • 4 篇 tahtali murat
  • 4 篇 abella m.
  • 4 篇 zheng yili
  • 4 篇 andrew j. reader
  • 4 篇 reader andrew j.
  • 4 篇 m. desco
  • 4 篇 testorf markus e...

语言

  • 621 篇 英文
  • 1 篇 其他
检索条件"任意字段=Conference on Image Reconstruction from Incomplete Data III"
622 条 记 录,以下是111-120 订阅
排序:
Brain Segmentation from k-Space with End-to-End Recurrent Attention Network  22nd
Brain Segmentation from k-Space with End-to-End Recurrent At...
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International conference on Medical image Computing and Computer-Assisted Intervention (MICCAI)
作者: Huang, Qiaoying Chen, Xiao Metaxas, Dimitris Nadar, Mariappan S. Rutgers State Univ Dept Comp Sci Piscataway NJ 08854 USA Siemens Healthineers Digital Technol & Innovat Princeton NJ USA Siemens Healthineers Princeton NJ USA
The task of medical image segmentation commonly involves an image reconstruction step to convert acquired raw data to images before any analysis. However, noises, artifacts and loss of information due to the reconstru... 详细信息
来源: 评论
Deep Learning Based Framework for Direct reconstruction of PET images  1
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International conference on Medical image Computing and Computer-Assisted Intervention (MICCAI)
作者: Liu, Zhiyuan Chen, Huai Liu, Huafeng Zhejiang Univ Coll Opt Sci & Engn State Key Lab Modern Opt Instrumentat Hangzhou Peoples R China
In Positron Emission Tomography (PET), high radioactivity maps are essential to better understand the physiological processes associated with the disease. In this paper, we propose a deep learning based framework for ... 详细信息
来源: 评论
Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR image reconstruction  1
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International conference on Medical image Computing and Computer-Assisted Intervention (MICCAI)
作者: Schlemper, Jo Salehi, Seyed Sadegh Mohseni Kundu, Prantik Lazarus, Carole Dyvorne, Hadrien Rueckert, Daniel Sofka, Michal Hyperfine Res Guilford CT 06437 USA Imperial Coll London Biomed Image Anal Grp London England
Deep learning for accelerated magnetic resonance (MR) image reconstruction is a fast growing field, which has so far shown promising results. However, most works are limited in the sense that they assume equidistant r... 详细信息
来源: 评论
Depth Camera Based Fluid reconstruction and its Solid-fluid Interaction  19
Depth Camera Based Fluid Reconstruction and its Solid-fluid ...
收藏 引用
32nd International conference on Computer Animation and Social Agents (CASA)
作者: Feng, Xiaobing Zhang, Juan Zhu, Dengming Shi, Min Wang, Zhaoqi Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Comp Technol Beijing Peoples R China Chinese Acad Sci Virtual Real Lab Inst Comp Technol Beijing Peoples R China North China Elect Power Univ Sch Control & Comp Engn Beijing Peoples R China
Fluid animation has great value in study and application in many fields, such as video special effects, virtual reality and so on. However, due to the complexity and irregularity of fluid's motion, the existing si... 详细信息
来源: 评论
Patient evaluation of Breast Shape-corrected Tomosynthesis reconstruction
Patient evaluation of Breast Shape-corrected Tomosynthesis R...
收藏 引用
conference on Medical Imaging - Physics of Medical Imaging
作者: Michielsen, Koen Rangelova, Tsvetanka Sechopoulos, Ioannis Radboudumc Dept Radiol & Nucl Med Nijmegen Netherlands Dutch Reference Ctr Screening LRCB Nijmegen Netherlands
Iterative reconstruction is a good match with the sparsely sampled limited angle data generated by breast tomosynthesis systems. However, it suffers from a specific artifact near the breast edge where it overestimates... 详细信息
来源: 评论
Geometry to the Rescue: 3D Instance reconstruction from a Cluttered Scene
Geometry to the Rescue: 3D Instance Reconstruction from a Cl...
收藏 引用
IEEE Computer Society conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Lin Li Salman Khan Nick Barnes Data61-CSIRO ANU IIAI ANU ANU
3D object instance reconstruction from a cluttered 2D scene image is an ill-posed problem. The main challenge is posed by the lack of geometric information in color images and heavy occlusions that lead to incomplete ... 详细信息
来源: 评论
Online MR image reconstruction for compressed sensing acquisition in T2*imaging  18
Online MR image reconstruction for compressed sensing acquis...
收藏 引用
conference on Wavelets and Sparsity XViii
作者: El Gueddari, Loubna Chouzenoux, Emilie Vignaud, Alexandre Pesquet, Jean-Christophe Ciuciu, Philippe CEA NeuroSpin Bat 145 F-91191 Gif Sur Yvette France Univ Paris Saclay Inria CEA Saclay Ile de France Parietal Team St Aubin France Univ Paris Saclay CVN Inria Saclay Cent Supelec St Aubin France
Reducing acquisition time is a major challenge in high-resolution MRI that has been successfully addressed by Compressed Sensing (CS) theory. While the scan time has been massively accelerated by a factor up to 20 in ... 详细信息
来源: 评论
A Novel Computed Tomography Scanning Mode and Local image reconstruction of Impurities in Pipeline
A Novel Computed Tomography Scanning Mode and Local Image Re...
收藏 引用
3rd International conference on Sensing and Imaging (ICSI)
作者: Zhang, Lingli Zeng, Li Wu, Dong Chongqing Univ Coll Math & Stat Chongqing Peoples R China Chongqing Univ Educ Minist China Engn Res Ctr Ind Computed Tomog Nondestruct Testi Chongqing Peoples R China Jiangsu Univ Technol Sch Comp Engn Changzhou Jiangsu Peoples R China
Impurities (such as globular, blocky, or irregular solid) in pipeline easily lead to pipeline jamming, especially flowing fluid from main pipeline bifurcating into the thin pipeline. This situation may impact fluid sp... 详细信息
来源: 评论
Reconstructing High-Quality Diffusion MRI data from Orthogonal Slice-Undersampled data Using Graph Convolutional Neural Networks  22nd
Reconstructing High-Quality Diffusion MRI Data from Orthogon...
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International conference on Medical image Computing and Computer-Assisted Intervention (MICCAI)
作者: Hong, Yoonmi Chen, Geng Yap, Pew-Thian Shen, Dinggang Univ N Carolina Dept Radiol Chapel Hill NC 27515 USA Univ N Carolina BRIC Chapel Hill NC 27515 USA
Diffusion MRI (dMRI), while powerful for the characterization of tissue microstructure, suffers from long acquisition times. In this paper, we propose a super-resolution (SR) reconstruction method based on orthogonal ... 详细信息
来源: 评论
Depth Completion Using a View-constrained Deep Prior
Depth Completion Using a View-constrained Deep Prior
收藏 引用
International conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)
作者: Pallabi Ghosh Vibhav Vineet Larry S. Davis Abhinav Shrivastava Sudipta Sinha Neel Joshi University of Maryland Microsoft Research
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is an effective regularizer in inverse... 详细信息
来源: 评论