咨询与建议

限定检索结果

文献类型

  • 3,547 篇 会议
  • 35 篇 期刊文献

馆藏范围

  • 3,582 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,558 篇 工学
    • 1,042 篇 电气工程
    • 991 篇 计算机科学与技术...
    • 895 篇 测绘科学与技术
    • 712 篇 信息与通信工程
    • 527 篇 软件工程
    • 217 篇 光学工程
    • 190 篇 仪器科学与技术
    • 155 篇 电子科学与技术(可...
    • 155 篇 控制科学与工程
    • 155 篇 航空宇航科学与技...
    • 90 篇 生物工程
    • 82 篇 机械工程
    • 62 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 50 篇 建筑学
    • 47 篇 环境科学与工程(可...
    • 46 篇 土木工程
  • 1,439 篇 理学
    • 1,026 篇 物理学
    • 246 篇 数学
    • 101 篇 生物学
    • 93 篇 系统科学
    • 86 篇 化学
    • 85 篇 统计学(可授理学、...
    • 43 篇 大气科学
    • 29 篇 地质学
    • 28 篇 地球物理学
  • 675 篇 医学
    • 673 篇 临床医学
  • 171 篇 管理学
    • 96 篇 图书情报与档案管...
    • 80 篇 管理科学与工程(可...
  • 43 篇 农学
    • 35 篇 作物学
  • 15 篇 军事学
  • 12 篇 经济学
  • 11 篇 法学
  • 5 篇 文学
  • 3 篇 教育学
  • 2 篇 艺术学

主题

  • 1,089 篇 remote sensing
  • 202 篇 image processing
  • 175 篇 feature extracti...
  • 169 篇 image segmentati...
  • 167 篇 synthetic apertu...
  • 156 篇 satellites
  • 140 篇 signal processin...
  • 119 篇 image resolution
  • 110 篇 hyperspectral im...
  • 109 篇 image reconstruc...
  • 105 篇 image classifica...
  • 103 篇 image fusion
  • 101 篇 deep learning
  • 95 篇 image analysis
  • 90 篇 spatial resoluti...
  • 89 篇 radar imaging
  • 87 篇 signal processin...
  • 87 篇 sensors
  • 86 篇 image coding
  • 70 篇 classification

机构

  • 27 篇 wuhan univ sch r...
  • 20 篇 school of remote...
  • 20 篇 beijing key labo...
  • 19 篇 natl aerosp univ...
  • 17 篇 beijing normal u...
  • 15 篇 institute of rem...
  • 15 篇 univ maryland ba...
  • 14 篇 beijing institut...
  • 13 篇 beijing institut...
  • 12 篇 beijing key labo...
  • 12 篇 beijing institut...
  • 11 篇 univ chinese aca...
  • 11 篇 school of inform...
  • 11 篇 beijing key lab ...
  • 11 篇 chinese acad sci...
  • 11 篇 university of ch...
  • 11 篇 univ maryland de...
  • 9 篇 beijing inst spa...
  • 9 篇 school of artifi...
  • 9 篇 state key labora...

作者

  • 36 篇 bruzzone lorenzo
  • 31 篇 chang chein-i
  • 29 篇 zhang libao
  • 24 篇 chehdi kacem
  • 17 篇 vozel benoit
  • 16 篇 bovolo francesca
  • 15 篇 lukin vladimir v...
  • 14 篇 chen zhenzhong
  • 14 篇 chanussot jocely...
  • 14 篇 chang chein- i
  • 13 篇 farah imed riadh
  • 12 篇 chen shih-yu
  • 12 篇 chen liang
  • 11 篇 zhang haopeng
  • 11 篇 benediktsson jon...
  • 10 篇 middelmann wolfg...
  • 10 篇 yuan yuan
  • 9 篇 abramov sergey k...
  • 9 篇 li yao
  • 9 篇 datcu mihai

语言

  • 3,523 篇 英文
  • 32 篇 土耳其文
  • 18 篇 其他
  • 7 篇 中文
  • 2 篇 俄文
检索条件"任意字段=Conference on Image and Signal Processing for Remote Sensing XXI"
3582 条 记 录,以下是1-10 订阅
排序:
MVITP: MULTI-VIEW image-TEXT PERCEPTION FOR FEW-SHOT remote sensing image CLASSIFICATION  49
MVITP: MULTI-VIEW IMAGE-TEXT PERCEPTION FOR FEW-SHOT REMOTE ...
收藏 引用
49th IEEE International conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Yang, Chen Liu, Tongtong Jiao, Didi Li, Wenhui Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China
Few-shot learning has been extensively applied in current remote sensing image classification, enabling rapid identification of new classes by leveraging prior knowledge effectively. However, current methods mainly re... 详细信息
来源: 评论
A Multi-Source remote sensing image Matching Approach Based on Texture-Enhanced Region Features
A Multi-Source Remote Sensing Image Matching Approach Based ...
收藏 引用
9th International conference on signal and image processing (ICSIP)
作者: Zhao Zilu Wang Feng You Hongjian Li Peifeng Zhang Tingtao Chinese Acad Sci Aerosp Informat Res Inst Beijing Peoples R China Key Lab Technol Geospatial Informat Proc & Applic Beijing Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing Peoples R China
Multi-source remote sensing image matching is crucial for remote sensing technology applications. However, the variations in factors such as grayscale, perspective, and sensors between multi-source images present cert... 详细信息
来源: 评论
UNSUPERVISED remote sensing HAZE REMOVAL BASED ON SALIENCY-GUIDED TRANSMISSION REFINEMENT  49
UNSUPERVISED REMOTE SENSING HAZE REMOVAL BASED ON SALIENCY-G...
收藏 引用
49th IEEE International conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Zheng, Ruohui Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
Haze causes information loss and quality degradation in remote sensing images. Unsupervised learning-based dehazing methods aim to reduce reliance on paired hazy images and their labels. However, complex mapping relat... 详细信息
来源: 评论
SEMANTIC SEGMENTATION FOR MULTI-SCENE remote sensing imageS WITH NOISY LABELS BASED ON UNCERTAINTY PERCEPTION  49
SEMANTIC SEGMENTATION FOR MULTI-SCENE REMOTE SENSING IMAGES ...
收藏 引用
49th IEEE International conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Lyu, Xinran Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
As the annotation of remote sensing images requires domain expertise, it is difficult to construct a large-scale and accurate annotated dataset. image-level annotation data learning has become a research hotspot. In a... 详细信息
来源: 评论
ENCODER-MINIMAL AND DECODER-MINIMAL FRAMEWORK FOR remote sensing image DEHAZING  49
ENCODER-MINIMAL AND DECODER-MINIMAL FRAMEWORK FOR REMOTE SEN...
收藏 引用
49th IEEE International conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Wen, Yuanbo Gao, Tao Li, Ziqi Zhang, Jing Chen, Ting Changan Univ Sch Informat Engn Xian Peoples R China Australian Natl Univ Coll Engn & Comp Sci Canberra ACT Australia
Haze obscures remote sensing images, hindering valuable information extraction. To this end, we propose RSHazeNet, an encoder-minimal and decoder-minimal framework for efficient remote sensing image dehazing. Specific... 详细信息
来源: 评论
TWO-STAGE TRIPLETNET: LIGHT WEIGHT remote sensing SCENE CLASSIFICATION  31
TWO-STAGE TRIPLETNET: LIGHT WEIGHT REMOTE SENSING SCENE CLAS...
收藏 引用
2024 International conference on image processing
作者: Hu, Xianbin Wu, Wei Li, Zhu Luo, Xueliang Chen, Zhengfeng Xidian Univ State Key Lab Integrated Serv Networks Xian Peoples R China Univ Missouri Kansas City Dept Comp Sci Elect Engn Kansas City MO USA
remote sensing scene classification (RSSC) seeks to allocate correct semantic labels to remote sensing images. Recently, numerous algorithms have made significant contributions to enhancing the accuracy of RSSC. Howev... 详细信息
来源: 评论
DiffRS: An Extensible Diffusion Model for remote sensing image Generation
DiffRS: An Extensible Diffusion Model for Remote Sensing Ima...
收藏 引用
2025 IEEE International conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Huang, Xinyue Niu, Xin Jiang, Jingfei Pan, Hengyue National University of Defense and Technology Changsha China
remote sensing image generation is of great value for virtual environment creation and adversarial learning for fake news detection. It could also address the learning sample shortage in the region of interest. Howeve... 详细信息
来源: 评论
CLOUDS AND HAZE CO-REMOVAL BASED ON WEIGHT-TUNED OVERLAP REFINEMENT DIFFUSION MODEL FOR remote sensing imageS  31
CLOUDS AND HAZE CO-REMOVAL BASED ON WEIGHT-TUNED OVERLAP REF...
收藏 引用
2024 International conference on image processing
作者: Zhang, Jingxuan Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
remote sensing image dehazing is essential for preprocessing, but most methods overlook the joint occlusion by clouds and haze. Furthermore, generative model-based restoration struggles with haze, weakening edge recov... 详细信息
来源: 评论
HAZY remote sensing imageS SEMANTIC SEGMENTATION FOR WEAKLY ANNOTATION BASED ON SALIENCY-AWARE ALIGNMENT STRATEGY  49
HAZY REMOTE SENSING IMAGES SEMANTIC SEGMENTATION FOR WEAKLY ...
收藏 引用
49th IEEE International conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Xu, Junda Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
The technique of semantic segmentation (SS) holds significant importance in the domain of remote sensing image (RSI) processing. The current research primarily encompasses two problems: 1) RSIs are easily affected by ... 详细信息
来源: 评论
ATTENTION ENHANCEMENT WITH PARALLEL GROUPS FOR remote sensing OBJECT DETECTION  31
ATTENTION ENHANCEMENT WITH PARALLEL GROUPS FOR REMOTE SENSIN...
收藏 引用
2024 International conference on image processing
作者: Yang, Zhigang Liu, Yiming Gao, Zehao He, Jiayue Chen, Tao Zhang, Wei Emma Harbin Engn Univ Coll Informat & Commun Engn Harbin 150001 Peoples R China Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia
Nowadays, remote sensing object detection has benefited a lot from the development of convolutional neural networks (CNNs). However, it is still a challenging task due to arbitrary orientation and dense distribution o... 详细信息
来源: 评论