咨询与建议

限定检索结果

文献类型

  • 3,541 篇 会议
  • 35 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 3,584 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,557 篇 工学
    • 1,043 篇 电气工程
    • 993 篇 计算机科学与技术...
    • 902 篇 测绘科学与技术
    • 712 篇 信息与通信工程
    • 526 篇 软件工程
    • 217 篇 光学工程
    • 190 篇 仪器科学与技术
    • 155 篇 电子科学与技术(可...
    • 155 篇 控制科学与工程
    • 155 篇 航空宇航科学与技...
    • 90 篇 生物工程
    • 82 篇 机械工程
    • 62 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 49 篇 建筑学
    • 45 篇 土木工程
    • 44 篇 环境科学与工程(可...
  • 1,434 篇 理学
    • 1,022 篇 物理学
    • 245 篇 数学
    • 101 篇 生物学
    • 93 篇 系统科学
    • 86 篇 化学
    • 84 篇 统计学(可授理学、...
    • 43 篇 大气科学
    • 29 篇 地质学
    • 28 篇 地球物理学
  • 679 篇 医学
    • 677 篇 临床医学
  • 171 篇 管理学
    • 96 篇 图书情报与档案管...
    • 80 篇 管理科学与工程(可...
  • 39 篇 农学
    • 31 篇 作物学
  • 15 篇 军事学
  • 12 篇 经济学
  • 11 篇 法学
  • 5 篇 文学
  • 3 篇 教育学
  • 2 篇 艺术学

主题

  • 1,083 篇 remote sensing
  • 202 篇 image processing
  • 174 篇 feature extracti...
  • 169 篇 image segmentati...
  • 168 篇 synthetic apertu...
  • 154 篇 satellites
  • 137 篇 signal processin...
  • 119 篇 image resolution
  • 111 篇 hyperspectral im...
  • 110 篇 image reconstruc...
  • 105 篇 image classifica...
  • 103 篇 image fusion
  • 101 篇 deep learning
  • 95 篇 image analysis
  • 90 篇 spatial resoluti...
  • 89 篇 radar imaging
  • 88 篇 sensors
  • 87 篇 signal processin...
  • 86 篇 image coding
  • 70 篇 classification

机构

  • 27 篇 wuhan univ sch r...
  • 20 篇 school of remote...
  • 20 篇 beijing key labo...
  • 19 篇 natl aerosp univ...
  • 17 篇 beijing normal u...
  • 15 篇 institute of rem...
  • 15 篇 univ maryland ba...
  • 14 篇 beijing institut...
  • 13 篇 beijing institut...
  • 12 篇 beijing key labo...
  • 12 篇 beijing institut...
  • 11 篇 univ chinese aca...
  • 11 篇 school of inform...
  • 11 篇 beijing key lab ...
  • 11 篇 chinese acad sci...
  • 11 篇 university of ch...
  • 11 篇 univ maryland de...
  • 9 篇 beijing inst spa...
  • 9 篇 school of artifi...
  • 9 篇 state key labora...

作者

  • 36 篇 bruzzone lorenzo
  • 31 篇 chang chein-i
  • 29 篇 zhang libao
  • 24 篇 chehdi kacem
  • 17 篇 vozel benoit
  • 16 篇 bovolo francesca
  • 15 篇 lukin vladimir v...
  • 14 篇 chen zhenzhong
  • 14 篇 chanussot jocely...
  • 14 篇 chang chein- i
  • 13 篇 farah imed riadh
  • 12 篇 chen shih-yu
  • 12 篇 chen liang
  • 11 篇 zhang haopeng
  • 11 篇 benediktsson jon...
  • 10 篇 middelmann wolfg...
  • 10 篇 yuan yuan
  • 9 篇 abramov sergey k...
  • 9 篇 li yao
  • 9 篇 datcu mihai

语言

  • 3,525 篇 英文
  • 32 篇 土耳其文
  • 18 篇 其他
  • 7 篇 中文
  • 2 篇 俄文
检索条件"任意字段=Conference on Image and Signal Processing for Remote Sensing XXIV"
3584 条 记 录,以下是31-40 订阅
排序:
INVESTIGATING AND REDUCING THE IMPAIRMENT OF POINT SPREAD EFFECT FOR SPATIOTEMPORAL FUSION OF remote sensing imageRY  31
INVESTIGATING AND REDUCING THE IMPAIRMENT OF POINT SPREAD EF...
收藏 引用
2024 International conference on image processing
作者: Li, Yunfei Li, Jun Sun Yat Sen Univ Sch Geog & Planning Guangzhou 510275 Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430078 Peoples R China
Spatiotemporal fusion of remote sensing imagery is a technology aiming to provide the synthetic dense satellite image series with medium spatial resolution. Presently, many spatiotemporal fusion approaches have been p... 详细信息
来源: 评论
A fusion algorithm of SAR and panchromatic remote sensing images for intertidal extraction
A fusion algorithm of SAR and panchromatic remote sensing im...
收藏 引用
2024 International conference on image, signal processing, and Pattern Recognition, ISPP 2024
作者: Li, Wenchao Liu, Sheng Ding, Hao He, Liang Chen, Zhenhua Li, Qingliang Xue, Kaichuang China Wenchang Spacescraft Launch Site 799 Shugang Ave Hainan Wenchang471300 China National University of Defense Technology 109 Deya Road Hunan Changsha410073 China
Intertidal terrain extraction based on satellite remote sensing images is of great military application and civilian value. In this paper, we propose a fusion algorithm based on SAR and optical remote sensing image to... 详细信息
来源: 评论
DiffRS: An Extensible Diffusion Model for remote sensing image Generation
DiffRS: An Extensible Diffusion Model for Remote Sensing Ima...
收藏 引用
2025 IEEE International conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Huang, Xinyue Niu, Xin Jiang, Jingfei Pan, Hengyue National University of Defense and Technology Changsha China
remote sensing image generation is of great value for virtual environment creation and adversarial learning for fake news detection. It could also address the learning sample shortage in the region of interest. Howeve... 详细信息
来源: 评论
Patch-based Cross-domain Adaptation for Few-shot remote sensing Scene Recognition  2
Patch-based Cross-domain Adaptation for Few-shot Remote Sens...
收藏 引用
2nd IEEE International conference on signal, Information and Data processing, ICSIDP 2024
作者: He, Chengzhi Liu, Yu Jiang, Zhizhuo Li, Yaowen Yan, Chenggang Zheng, Bolun Tsinghua University Shenzhen International Graduate School Shenzhen China Tsinghua University Department of Electronic Engineering Beijing China Hangzhou Dianzi University Intelligent Information Processing Laboratory Hangzhou China
Recognizing new classes from a few labeled remote sensing images presents a significant challenge. Existing methodologies assume that training and testing datasets come from identical domains. Collecting training data... 详细信息
来源: 评论
Few-Shot Optical remote sensing Object Detection Based on Shape Matching  2
Few-Shot Optical Remote Sensing Object Detection Based on Sh...
收藏 引用
2nd IEEE International conference on signal, Information and Data processing, ICSIDP 2024
作者: Wu, Zhihui Yuan, Hong-Fang Ma, Fei Zhang, Fan Beijing University of Chemical Technology College of Information Science and Technology Beijing China
Traditional object detection methods suffer from excessively high false alarm rates in scenarios with scarce training samples. To address this issue, this paper proposes a few-shot optical remote sensing object detect... 详细信息
来源: 评论
PROGRESSIVE REFINEMENT LEARNING BASED ON FEATURE INTERACTIVE FUSION FOR SEMANTIC SEGMENTATION OF remote sensing LIMITED DATASET  30
PROGRESSIVE REFINEMENT LEARNING BASED ON FEATURE INTERACTIVE...
收藏 引用
30th IEEE International conference on image processing (ICIP)
作者: Lyu, Xinran Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
Due to the labor cost and the accuracy of manual identification, it is very difficult to make a strong label dataset of remote sensing images with a large amount of data. Therefore, the limited remote sensing dataset ... 详细信息
来源: 评论
Application Research of On-Board Satellite remote sensing image Terrain Classification Based on Deep Learning  11th
Application Research of On-Board Satellite Remote Sensing Im...
收藏 引用
11th International conference on signal and Information processing, Network and Computers, ICSINC 2023
作者: Tian, Hexiang Zhang, Jingya Zhao, Wenrui Institute of Remote Sensing Satellite CAST Beijing100094 China
Aiming at the real-time on-board intelligent decoding/translating need of the satellite remote sensing image, the article raises up a system structure of satellite remote sensing image terrain classification based on ... 详细信息
来源: 评论
TRANSFORMATION CONSISTENCY FOR remote sensing image SUPER-RESOLUTION  30
TRANSFORMATION CONSISTENCY FOR REMOTE SENSING IMAGE SUPER-RE...
收藏 引用
30th IEEE International conference on image processing (ICIP)
作者: Deng, Kai Yao, Ping Cheng, Siyuan Bi, Junyu Zhang, Kun Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Comp Technol Beijing Peoples R China INRIA Saclay Ile De France Palaiseau France Inst Polytech Paris Paris France
Single image Super-Resolution (SISR) based on deep learning methods has been widely studied for applications on remote sensing images. With limited remote sensing images, most of the existing SISR methods simply adopt... 详细信息
来源: 评论
The application of Gaussian-Rayleigh mixture model in remote sensing image segmentation  9
The application of Gaussian-Rayleigh mixture model in remote...
收藏 引用
9th International conference on Intelligent Computing and signal processing, ICSP 2024
作者: Sun, Xiaoxue Yang, Yue Li, Yanhao Gao, Guoren Jilin Agriculture Science and Technology University Mechanical Engineering Department Jilin Jilin China State Grid Liaoning Extra High Voltage Company Liaoning Anshan China
This paper employs the Entropy-Max method to determine the optimal number of classes in an image, utilizes the Markov Random Field (MRF) method to complete the image segmentation, and addresses the computation of maxi... 详细信息
来源: 评论
Compressive sensing based sparse representation analysis for remote sensing SAR imagery
Compressive sensing based sparse representation analysis for...
收藏 引用
2024 International conference on remote sensing, Mapping, and Geographic Information Systems, RSMG 2024
作者: Yin, Hang Wang, Jue Wen, Xinyi Xie, Xinran Space Engineering University Beijing101407 China
The signal processing technology of Compressive sensing (CS) overturns the limitation of the traditional sensing method that only high sampling rate can achieve high resolution. The compressive sensing method saves in... 详细信息
来源: 评论