咨询与建议

限定检索结果

文献类型

  • 3,540 篇 会议
  • 35 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 3,583 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,553 篇 工学
    • 1,041 篇 电气工程
    • 993 篇 计算机科学与技术...
    • 892 篇 测绘科学与技术
    • 712 篇 信息与通信工程
    • 526 篇 软件工程
    • 221 篇 光学工程
    • 188 篇 仪器科学与技术
    • 157 篇 控制科学与工程
    • 155 篇 电子科学与技术(可...
    • 154 篇 航空宇航科学与技...
    • 90 篇 生物工程
    • 83 篇 机械工程
    • 64 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 51 篇 建筑学
    • 47 篇 土木工程
    • 43 篇 环境科学与工程(可...
  • 1,427 篇 理学
    • 1,017 篇 物理学
    • 246 篇 数学
    • 102 篇 生物学
    • 93 篇 系统科学
    • 84 篇 化学
    • 84 篇 统计学(可授理学、...
    • 42 篇 大气科学
    • 29 篇 地球物理学
    • 29 篇 地质学
  • 677 篇 医学
    • 675 篇 临床医学
  • 171 篇 管理学
    • 96 篇 图书情报与档案管...
    • 80 篇 管理科学与工程(可...
  • 38 篇 农学
    • 30 篇 作物学
  • 15 篇 军事学
  • 12 篇 经济学
  • 11 篇 法学
  • 5 篇 文学
  • 3 篇 教育学
  • 2 篇 艺术学

主题

  • 1,082 篇 remote sensing
  • 202 篇 image processing
  • 174 篇 feature extracti...
  • 168 篇 image segmentati...
  • 167 篇 synthetic apertu...
  • 155 篇 satellites
  • 137 篇 signal processin...
  • 118 篇 image resolution
  • 111 篇 image reconstruc...
  • 110 篇 hyperspectral im...
  • 105 篇 image classifica...
  • 104 篇 image fusion
  • 101 篇 deep learning
  • 95 篇 image analysis
  • 90 篇 spatial resoluti...
  • 89 篇 radar imaging
  • 87 篇 signal processin...
  • 87 篇 sensors
  • 86 篇 image coding
  • 70 篇 classification

机构

  • 27 篇 wuhan univ sch r...
  • 20 篇 school of remote...
  • 20 篇 beijing key labo...
  • 19 篇 natl aerosp univ...
  • 17 篇 institute of rem...
  • 17 篇 beijing normal u...
  • 15 篇 univ maryland ba...
  • 14 篇 beijing institut...
  • 13 篇 beijing institut...
  • 12 篇 beijing key labo...
  • 12 篇 beijing institut...
  • 11 篇 univ chinese aca...
  • 11 篇 school of inform...
  • 11 篇 beijing key lab ...
  • 11 篇 chinese acad sci...
  • 11 篇 university of ch...
  • 11 篇 univ maryland de...
  • 9 篇 beijing inst spa...
  • 9 篇 school of artifi...
  • 9 篇 state key labora...

作者

  • 36 篇 bruzzone lorenzo
  • 31 篇 chang chein-i
  • 29 篇 zhang libao
  • 24 篇 chehdi kacem
  • 17 篇 vozel benoit
  • 16 篇 bovolo francesca
  • 15 篇 lukin vladimir v...
  • 14 篇 chen zhenzhong
  • 14 篇 chanussot jocely...
  • 14 篇 chang chein- i
  • 13 篇 farah imed riadh
  • 12 篇 chen shih-yu
  • 12 篇 chen liang
  • 11 篇 zhang haopeng
  • 11 篇 benediktsson jon...
  • 10 篇 middelmann wolfg...
  • 10 篇 yuan yuan
  • 9 篇 abramov sergey k...
  • 9 篇 li yao
  • 9 篇 datcu mihai

语言

  • 3,490 篇 英文
  • 52 篇 其他
  • 32 篇 土耳其文
  • 8 篇 中文
  • 2 篇 俄文
检索条件"任意字段=Conference on Image and Signal Processing for Remote Sensing XXIX"
3583 条 记 录,以下是211-220 订阅
排序:
DYNAMIC MUTUAL ENHANCEMENT NETWORK FOR SINGLE remote sensing image DEHAZING  29
DYNAMIC MUTUAL ENHANCEMENT NETWORK FOR SINGLE REMOTE SENSING...
收藏 引用
IEEE International conference on image processing (ICIP)
作者: Wang, Shan Zhang, Libao Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
In this paper, we propose a dynamic mutual enhancement network (DMENet) for haze removal in remote sensing images. It has three major advantages compared with other dehazing algorithms: 1) The proposed DMENet is based... 详细信息
来源: 评论
Fusion of Multiple Models with Multi-Modal Datasets: Land Cover Mapping in the Yangtze River Economic Belt  14
Fusion of Multiple Models with Multi-Modal Datasets: Land Co...
收藏 引用
14th Workshop on Hyperspectral Imaging and signal processing: Evolution in remote sensing, WHISPERS 2024
作者: Li, Jiepan Huang, He Xia, Yu Wuhan University State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan430079 China Pengcheng Laboratory Shenzhen518066 China
Land cover is essential for understanding Earth's environment, playing a vital role in disaster monitoring and infrastructure management. The Yangtze River Economic Belt, a pivotal region for economic growth in Ch... 详细信息
来源: 评论
Domain-Adaptive Deep Transfer Learning for Cross-Modal Heterogeneous image Matching under Label-Scarce Constraints  2
Domain-Adaptive Deep Transfer Learning for Cross-Modal Heter...
收藏 引用
2nd IEEE International conference on signal, Information and Data processing, ICSIDP 2024
作者: Gong, Guoqing Yang, PeiZhen Yang, Chao Han, Zhiqiang Ye, Yuanxin Southwest Jiaotong University Faculty of Geosciences and Engineering Sichuan Chengdu611576 China
Deep learning has made significant strides in cross-modal heterogeneous remote sensing image matching, yet it remains heavily dependent on annotated target scene data for training models. Under label-scarce constraint... 详细信息
来源: 评论
Multi-scale Frequency Attention Fusion Network for Optical and SAR image Registration  17
Multi-scale Frequency Attention Fusion Network for Optical a...
收藏 引用
17th IEEE International conference on signal processing, ICSP 2024
作者: Hu, Xin Wu, Yan Li, Zhikang Yang, Zhifei Li, Ming Xidian University School of Electronic Engineering Xi'an China Xidian University National Key Laboratory of Radar Signal Processing Xi'an China
image registration is a prerequisite for remote sensing image fusion and classification, and registration accuracy affects the performance of these tasks. However, there are significant nonlinear radiation differences... 详细信息
来源: 评论
MPFFNet:Semantic Segmentation of remote sensing image Buildings Based on Multipath Feature Fusion  8
MPFFNet:Semantic Segmentation of Remote Sensing Image Buildi...
收藏 引用
8th International conference on Communication, image and signal processing, CCISP 2023
作者: Dong, Jie Mao, Jingkun Liu, Kun Cheng, Liangyong School of Electrical Engineering and Automation Tianjin University of Technology Tianjin China School of Artificial Intelligence and Data Science Hebei University of Technology Tianjin China Interplanetary Space Technology Development Co. LTD Tianjin China
The buildings with variable scales and complex background information in remote sensing images often result in missed and misclassified segmentation of buildings. To address this issue, this paper designs an multipath... 详细信息
来源: 评论
EM2-YOLO: Lightweight remote sensing image Detection  5th
EM2-YOLO: Lightweight Remote Sensing Image Detection
收藏 引用
5th International conference on 3D Imaging Technologies—Multidimensional signal processing and Deep Learning, 3DIT-MSP and DL 2023
作者: Liu, Xinyi Song, Yaolian Wang, Can School of Information Engineering and Automation Kunming University of Science and Technology Yunnan650500 China
remote sensing photographs have a wealth of information, and object detection methods are crucial in this. On mobile and embedded platforms, deep learning-based target identification algorithms are challenging to impl... 详细信息
来源: 评论
Semi-supervised Medical image Classification Based on DenseNet and Capsule Network Combination Model
Semi-supervised Medical Image Classification Based on DenseN...
收藏 引用
2024 International conference on remote sensing, Mapping, and image processing, RSMIP 2024
作者: Shen, Hao Mo, Jiaqing Ren, Jinxun Xinjiang Key Laboratory of Signal Detection and Processing School of Information Science and Engineering Xinjiang University Urumqi830017 China
Medical image classification plays a crucial role in clinical treatment and medical education. However, traditional classification methods have reached performance limits and require substantial time and effort for fe... 详细信息
来源: 评论
Semi-Supervised remote sensing image Change Detection Using Mean Teacher Model for Constructing Pseudo-Labels  48
Semi-Supervised Remote Sensing Image Change Detection Using ...
收藏 引用
48th IEEE International conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Mao, Zan Tong, Xinyu Luo, Ze Chinese Academy of Sciences Computer Network Information Center Beijing China University of the Chinese Academy of Sciences Beijing China
In recent years, deep learning has ushered in great developments in remote sensing image change detection. Practically, it is labor-intensive and time-consuming to label images for co-registration. In this paper, we p... 详细信息
来源: 评论
Point process and CNN for small object detection in satellite images  28
Point process and CNN for small object detection in satellit...
收藏 引用
conference on image and signal processing for remote sensing XXVIII
作者: Mabon, Jules Ortner, Mathias Zerubia, Josiane Univ Cote dAzur Inria Sophia Antipolis France Airbus Def & Space Toulouse France
In this article we present a combination of marked point processes with convolutional neural networks applied to remote sensing. While point processes allow modeling interactions between objects via priors, classical ... 详细信息
来源: 评论
Research on remote sensing image Classification Algorithm Based on EfficientNet  7
Research on Remote Sensing Image Classification Algorithm Ba...
收藏 引用
7th International conference on Intelligent Computing and signal processing, ICSP 2022
作者: Yin, Hang Yang, Chengyi Lu, Jiayi Xi'an University of Science and Technology School of Computer Science and Technology Xi'an China Harbin University of Science and Technology School of Computer Science and Technology Harbin China Beijing University of Chemical Technology School of Mechanical and Electrical Engineering Beijing China
Accurate classification of remote sensing images is important in remote sensing applications. In order to verify the efficiency and accuracy of efficientnet algorithm in remote sensing image classification, this paper... 详细信息
来源: 评论