咨询与建议

限定检索结果

文献类型

  • 3,542 篇 会议
  • 35 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 3,585 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,553 篇 工学
    • 1,039 篇 电气工程
    • 994 篇 计算机科学与技术...
    • 893 篇 测绘科学与技术
    • 713 篇 信息与通信工程
    • 528 篇 软件工程
    • 221 篇 光学工程
    • 186 篇 仪器科学与技术
    • 157 篇 控制科学与工程
    • 156 篇 航空宇航科学与技...
    • 155 篇 电子科学与技术(可...
    • 91 篇 生物工程
    • 83 篇 机械工程
    • 64 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 51 篇 建筑学
    • 47 篇 土木工程
    • 43 篇 环境科学与工程(可...
  • 1,428 篇 理学
    • 1,017 篇 物理学
    • 246 篇 数学
    • 102 篇 生物学
    • 93 篇 系统科学
    • 85 篇 化学
    • 84 篇 统计学(可授理学、...
    • 42 篇 大气科学
    • 29 篇 地球物理学
    • 29 篇 地质学
  • 677 篇 医学
    • 675 篇 临床医学
  • 171 篇 管理学
    • 96 篇 图书情报与档案管...
    • 80 篇 管理科学与工程(可...
  • 38 篇 农学
    • 30 篇 作物学
  • 15 篇 军事学
  • 12 篇 经济学
  • 11 篇 法学
  • 5 篇 文学
  • 3 篇 教育学
  • 2 篇 艺术学

主题

  • 1,081 篇 remote sensing
  • 202 篇 image processing
  • 175 篇 feature extracti...
  • 169 篇 image segmentati...
  • 168 篇 synthetic apertu...
  • 155 篇 satellites
  • 138 篇 signal processin...
  • 119 篇 image resolution
  • 111 篇 image reconstruc...
  • 111 篇 hyperspectral im...
  • 105 篇 image classifica...
  • 103 篇 image fusion
  • 101 篇 deep learning
  • 95 篇 image analysis
  • 90 篇 spatial resoluti...
  • 89 篇 radar imaging
  • 88 篇 sensors
  • 87 篇 signal processin...
  • 86 篇 image coding
  • 71 篇 classification

机构

  • 27 篇 wuhan univ sch r...
  • 20 篇 school of remote...
  • 20 篇 beijing key labo...
  • 19 篇 natl aerosp univ...
  • 17 篇 institute of rem...
  • 17 篇 beijing normal u...
  • 15 篇 univ maryland ba...
  • 14 篇 beijing institut...
  • 13 篇 beijing institut...
  • 12 篇 beijing key labo...
  • 12 篇 chinese acad sci...
  • 12 篇 beijing institut...
  • 11 篇 univ chinese aca...
  • 11 篇 school of inform...
  • 11 篇 beijing key lab ...
  • 11 篇 university of ch...
  • 11 篇 univ maryland de...
  • 9 篇 beijing inst spa...
  • 9 篇 school of artifi...
  • 9 篇 state key labora...

作者

  • 36 篇 bruzzone lorenzo
  • 31 篇 chang chein-i
  • 29 篇 zhang libao
  • 24 篇 chehdi kacem
  • 17 篇 bovolo francesca
  • 17 篇 vozel benoit
  • 15 篇 lukin vladimir v...
  • 14 篇 chen zhenzhong
  • 14 篇 chanussot jocely...
  • 14 篇 chang chein- i
  • 13 篇 farah imed riadh
  • 12 篇 chen shih-yu
  • 12 篇 chen liang
  • 11 篇 zhang haopeng
  • 11 篇 benediktsson jon...
  • 10 篇 middelmann wolfg...
  • 10 篇 yuan yuan
  • 9 篇 abramov sergey k...
  • 9 篇 li yao
  • 9 篇 datcu mihai

语言

  • 3,492 篇 英文
  • 52 篇 其他
  • 32 篇 土耳其文
  • 8 篇 中文
  • 2 篇 俄文
检索条件"任意字段=Conference on Image and Signal Processing for Remote Sensing XXVII"
3585 条 记 录,以下是61-70 订阅
排序:
Swin Transformer based Siamese Network for Thermal and Optical image Registration  31
Swin Transformer based Siamese Network for Thermal and Optic...
收藏 引用
31st IEEE conference on signal processing and Communications Applications (SIU)
作者: Elsaeidy, Mohamed Yagmur, Ismail Can Ates, Hasan Fehmi Gunturk, Bahadir Kursat Istanbul Medipol Univ Dept Comp Engn Istanbul Turkiye Ozyegin Univ Dept Comp Sci Istanbul Turkiye
The process of multi-modal image registration is fundamental in remote sensing and visual navigation applications. However, existing image registration methods that are designed for single modality images do not provi... 详细信息
来源: 评论
K2NN: Self-Supervised Learning with Hierarchical Nearest Neighbors for remote sensing  48
K2NN: Self-Supervised Learning with Hierarchical Nearest Nei...
收藏 引用
48th IEEE International conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Yuan, Jianlong Xu, Yuanhong Wang, Zhibin Alibaba Group China
Self-supervised learning aims to learn applicable pre-trained models from massive unlabeled data. Besides image-level pretext tasks, many recent pixel-level studies have been pro-posed to learn dense information in ea... 详细信息
来源: 评论
remote sensing image Completion Using a Diffusion-Based Propagation Algorithm  29
Remote Sensing Image Completion Using a Diffusion-Based Prop...
收藏 引用
conference on image and signal processing for remote sensing XXIX
作者: Rolland, Iain Selvakumaran, Sivasakthy Marinoni, Andrea Univ Cambridge Engn Dept Cambridge England UiT Arctic Univ Norway Tromso Norway
In the field of remote sensing it is common to have image data which can be considered in some way to be incomplete. This may relate to missing information caused by sensor failures, cloud cover or partially overlappi... 详细信息
来源: 评论
Speed Estimation Based on Inter-frame Difference
Speed Estimation Based on Inter-frame Difference
收藏 引用
2024 International conference on remote sensing, Mapping, and image processing, RSMIP 2024
作者: Xie, Huawei Department of Forensic Science Fujian Police College Fuzhou China
Not all the physical evidence and traces left by field accidents are necessarily related to the occurrence of accidents and the identification of speed. Later appraisers also need to carry out the reconstruction of tr... 详细信息
来源: 评论
Removal of thin clouds from high-resolution optical images based on multiscale feature fusion
Removal of thin clouds from high-resolution optical images b...
收藏 引用
2024 International conference on Advanced image processing Technology, AIPT 2024
作者: Xiao, Yunlong Hubei University of Technology Hubei Province Wuhan430000 China
High-resolution optical images are susceptible to atmospheric influences during their formation, and thin clouds are the most important influencing factor. Feature information loss due to thin-cloud coverage is a comm... 详细信息
来源: 评论
Learning and scoring Point Process models for object detection in satellite images  32
Learning and scoring Point Process models for object detecti...
收藏 引用
32nd European signal processing conference (EUSIPCO)
作者: Mabon, Jules Ortner, Mathias Zerubia, Josiane Univ Cote dAzur Inria Sophia Antipolis France Airbus Def & Space Toulouse France
In this paper we propose a joint Point Process and CNN based method for object detection in satellite imagery. The Point Process allows building a lightweight interaction model, while the CNN allows to efficiently ext... 详细信息
来源: 评论
Monitoring Technology and Data processing Methods for Chinese Bridges Research Progress
Monitoring Technology and Data Processing Methods for Chines...
收藏 引用
2024 International conference on remote sensing, Mapping, and image processing, RSMIP 2024
作者: Chen, Xiaonian Chen, Cheng College of Civil Engineering Fuzhou University Fujian Fuzhou China
Since the number of bridges in China keeps increasing and some bridges with the damage problems brought by the age of are gradually taken into account, thus the health monitoring of bridges becomes much more important... 详细信息
来源: 评论
Analysis of the effects of heatwave events on continental surfaces from multi-spectral satellite series  7
Analysis of the effects of heatwave events on continental su...
收藏 引用
IEEE 7th International conference on Advanced Technologies, signal and image processing (ATSIP)
作者: Aicha, Chahbi Bellakanji Ferdaws, Ben Akacha Mehrez, Zribi Carthage Univ Natl Agron Inst Tunisia Lr17AGRO1 Lr GREEN TEAM 43 Av Charles Nicolle Tunis 1082 Tunisia Univ Toulouse CNES CNRS CESBIOUT3 Paul SabatierIRD F-31400 Toulouse France
Over the past few decades, Tunisia has faced heatwaves, droughts, and severe meteorological fluctuations, significantly impacting its agricultural sector and natural landscapes. This study focuses on the prolonged imp... 详细信息
来源: 评论
SlotFusion: Object-Centric Audiovisual Feature Fusion with Slot Attention for remote sensing Scene Recognition
SlotFusion: Object-Centric Audiovisual Feature Fusion with S...
收藏 引用
2025 IEEE International conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Han, Fangzhou Yu, Tianyi Zhang, Lamei Si, Lingyu Zhang, Yiqi Dept. of Information Engineering Harbin Institute of Technology Harbin China National Key Laboratory of Space Integrated Information System Institute of Software Chinese Academy of Sciences Beijing China Institute of Software Chinese Academy of Sciences Beijing China
Despite significant advancements in remote sensing multimodal learning, particularly in image-image feature fusion, the exploration of audio-image feature fusion remains insufficient. Given the complexity and redundan... 详细信息
来源: 评论
A novel CNN-Transformer network for cloud detection in remote sensing image
A novel CNN-Transformer network for cloud detection in remot...
收藏 引用
2024 International conference on image, signal processing, and Pattern Recognition, ISPP 2024
作者: Ai, Xinkai Sun, Lin College of Geodesy and Geomatics Shandong University of Science and Technology Shandong Province Qingdao266590 China
Convolutional neural networks (CNNs) are the mainstream model for extracting rich features in deep learning-driven studies on cloud detection for remote sensing images. However, due to the limitation of receptive fiel... 详细信息
来源: 评论