咨询与建议

限定检索结果

文献类型

  • 2,959 篇 会议
  • 39 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 3,005 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,760 篇 工学
    • 1,407 篇 计算机科学与技术...
    • 684 篇 软件工程
    • 490 篇 电气工程
    • 397 篇 信息与通信工程
    • 203 篇 控制科学与工程
    • 130 篇 生物工程
    • 79 篇 电子科学与技术(可...
    • 65 篇 生物医学工程(可授...
    • 59 篇 机械工程
    • 54 篇 仪器科学与技术
    • 49 篇 光学工程
    • 34 篇 网络空间安全
    • 30 篇 动力工程及工程热...
    • 24 篇 材料科学与工程(可...
    • 24 篇 安全科学与工程
    • 22 篇 化学工程与技术
    • 20 篇 测绘科学与技术
    • 19 篇 石油与天然气工程
  • 517 篇 理学
    • 226 篇 物理学
    • 190 篇 数学
    • 143 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 40 篇 系统科学
    • 27 篇 化学
  • 203 篇 管理学
    • 135 篇 管理科学与工程(可...
    • 81 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 135 篇 医学
    • 112 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 37 篇 法学
    • 20 篇 社会学
  • 18 篇 文学
  • 14 篇 农学
  • 10 篇 教育学
  • 9 篇 经济学
  • 2 篇 军事学

主题

  • 590 篇 neural networks
  • 173 篇 training
  • 168 篇 artificial neura...
  • 165 篇 deep learning
  • 135 篇 computational mo...
  • 124 篇 feature extracti...
  • 115 篇 neural network
  • 114 篇 convolutional ne...
  • 88 篇 machine learning
  • 87 篇 neurons
  • 86 篇 parallel process...
  • 79 篇 deep neural netw...
  • 74 篇 computer archite...
  • 73 篇 distributed comp...
  • 65 篇 signal processin...
  • 62 篇 distributed proc...
  • 62 篇 accuracy
  • 60 篇 recurrent neural...
  • 55 篇 data models
  • 50 篇 convolutional ne...

机构

  • 11 篇 institute of inf...
  • 9 篇 school of cyber ...
  • 8 篇 univ chinese aca...
  • 8 篇 natl univ def te...
  • 7 篇 college of compu...
  • 7 篇 carnegie mellon ...
  • 7 篇 national laborat...
  • 7 篇 beijing universi...
  • 7 篇 natl univ def te...
  • 6 篇 shanghai jiao to...
  • 6 篇 the islamic univ...
  • 6 篇 department of co...
  • 5 篇 science and tech...
  • 5 篇 ibm tj watson re...
  • 5 篇 school of inform...
  • 5 篇 king saud univer...
  • 5 篇 shandong normal ...
  • 5 篇 kaust thuwal
  • 5 篇 university of ch...
  • 5 篇 natl univ def te...

作者

  • 8 篇 li dongsheng
  • 8 篇 dou yong
  • 8 篇 jie liu
  • 6 篇 richtarik peter
  • 6 篇 ribeiro alejandr...
  • 6 篇 liu jie
  • 6 篇 niu xin
  • 6 篇 yong dou
  • 6 篇 shulian yang
  • 6 篇 zhang wei
  • 5 篇 ryabinin max
  • 5 篇 segarra santiago
  • 5 篇 lai zhiquan
  • 5 篇 ding bo
  • 5 篇 qiao peng
  • 5 篇 xu jiren
  • 5 篇 kokkinos yiannis
  • 5 篇 peng yuxing
  • 5 篇 wang huaimin
  • 5 篇 li aiping

语言

  • 2,925 篇 英文
  • 72 篇 其他
  • 8 篇 中文
  • 2 篇 土耳其文
检索条件"任意字段=Conference on Neural Network and Distributed Processing"
3005 条 记 录,以下是1091-1100 订阅
排序:
Prediction of the Cyanobacteria Coverage in Time-series Images based on Convolutional neural network  21
Prediction of the Cyanobacteria Coverage in Time-series Imag...
收藏 引用
4th International conference on Control and Computer Vision, ICCCV 2021
作者: Ye, Xiangyu Lai, Zhiquan Li, Dongsheng National Key Laboratory of Parallel and Distributed Processing Computer College National University of Defense Technology China
In recent years, the problem of lake eutrophication has become increasingly severe. The monitoring and control of cyanobacteria in lakes are of great significance. The information obtained by existing monitoring metho... 详细信息
来源: 评论
SUBMODULAR RANK AGGREGATION ON SCORE-BASED PERMUTATIONS FOR distributed AUTOMATIC SPEECH RECOGNITION
SUBMODULAR RANK AGGREGATION ON SCORE-BASED PERMUTATIONS FOR ...
收藏 引用
IEEE International conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Qi, Jun Yang, Chao-Han Huck Tejedor, Javier Georgia Inst Technol Elect & Comp Engn Atlanta GA 30332 USA Univ San Pablo CEU CEU Univ Escuela Politecn Super Madrid Spain
distributed automatic speech recognition (ASR) requires to aggregate outputs of distributed deep neural network (DNN)-based models. This work studies the use of submodular functions to design a rank aggregation on sco... 详细信息
来源: 评论
CopGAT: Co-propagation Self-supervised Graph Attention network
CopGAT: Co-propagation Self-supervised Graph Attention Netwo...
收藏 引用
IEEE International conference on Big Data and Cloud Computing (BdCloud)
作者: Baoming Zhang Ming Xu Mingcai Chen Mingyuan Chen Chongjun Wang Department of Computer Science and Technology State Key Laboratory for Novel Software Technology Nanjing University Nanjing China
Graph Attention network (GAT) is one of the state-of-the-art architectures for Graph neural networks (GNNs). In this paper, we first propose Label Purity to explore the relationship between the graph attention and the... 详细信息
来源: 评论
Detection of Melanoma Skin Cancer Using Capsule network and Multi-Task Learning Framework
Detection of Melanoma Skin Cancer Using Capsule Network and ...
收藏 引用
International conference on Wavelet Active Media Technology and Information processing (ICWAMTIP)
作者: Esther Stacy E. B. Aggrey Qin Zhen Seth Larweh Kodjiku Kwame O. Asamoah Obed Barnes Linda Delali Fiasam Evan Aidoo Henrietta Aggrey School of Information and Software Engineering University of Electronic Science and Technology of China Chengdu China School of Computer and Information Engineering Zhejiang Gongshang University Hangzhou China College of Teacher Education Zhejiang Normal University Jinhua China Department of Computer Science and Information Technology University of Cape Coast Cape Coast Ghana Department of Mechanical Engineering Kwame Nkrumah University of Science & Technology Kumasi Ghana
Melanoma is the most dangerous and aggressive kind of skin cancer, which is also the most frequent form of cancer worldwide. Given the complexities involved, automatic melanoma detection using skin imaging has lately ... 详细信息
来源: 评论
Object-Centric Learning with Slot Attention  34
Object-Centric Learning with Slot Attention
收藏 引用
34th conference on neural Information processing Systems (NeurIPS)
作者: Locatello, Francesco Weissenborn, Dirk Unterthiner, Thomas Mahendran, Aravindh Heigold, Georg Uszkoreit, Jakob Dosovitskiy, Alexey Kipf, Thomas Google Res Brain Team Mountain View CA 94043 USA Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Max Planck Inst Intelligent Syst Stuttgart Germany
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed repr... 详细信息
来源: 评论
Training Transformers Together  35
Training Transformers Together
收藏 引用
35th Annual conference on neural Information processing Systems (NeurIPS)
作者: Borzunov, Alexander Ryabinin, Max Dettmers, Tim Lhoest, Quentin Saulnier, Lucile Diskin, Michael Jernite, Yacine Wolf, Thomas HSE Univ Yandex France Univ Washington Seattle WA USA Hugging Face New York NY USA
The infrastructure necessary for training state-of-the-art models is becoming overly expensive, which makes training such models affordable only to large corporations and institutions. Recent work proposes several met... 详细信息
来源: 评论
A Dynamic Mapping Model for General CNN Accelerator Based on FPGA  17th
A Dynamic Mapping Model for General CNN Accelerator Based on...
收藏 引用
17th IFIP WG 10.3 International conference on network and Parallel Computing, NPC 2020
作者: Zhao, Xiaoqiang Jiang, Jingfei Han, Zhe Xu, Jinwei Liu, Zhiqiang National Laboratory for Parallel and Distributed Processing National University of Defense Technology Changsha China Artificial Intelligence Research Center National Innovation Institute of Defense Technology Beijing China
As the application scenarios of convolutional neural network (CNN) become more and more complex, the general CNN accelerator based on matrix multiplication has become a new research focus. The existing mapping methods... 详细信息
来源: 评论
6th International conference on Advanced Intelligent Systems and Informatics, AISI 2020
6th International Conference on Advanced Intelligent Systems...
收藏 引用
6th International conference on Advanced Intelligent Systems and Informatics, AISI 2020
The proceedings contain 78 papers. The special focus in this conference is on Advanced Intelligent Systems and Informatics. The topics include: Deep neural networks for Landmines Images Classification;Deep Convolution...
来源: 评论
ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient distributed Training  34
ScaleCom: Scalable Sparsified Gradient Compression for Commu...
收藏 引用
34th conference on neural Information processing Systems (NeurIPS)
作者: Chen, Chia-Yu Ni, Jiamin Lu, Songtao Cui, Xiaodong Chen, Pin-Yu Sun, Xiao Wang, Naigang Venkataramani, Swagath Srinivasan, Vijayalakshmi Zhang, Wei Gopalakrishnan, Kailash IBM TJ Watson Res Ctr Yorktown Hts NY 10598 USA
Large-scale distributed training of Deep neural networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained. To overcome this limitation, numerous gradient compression techniques... 详细信息
来源: 评论
Dynamic Path Based DNN Synergistic Inference Acceleration in Edge Computing Environment  27
Dynamic Path Based DNN Synergistic Inference Acceleration in...
收藏 引用
27th IEEE International conference on Parallel and distributed Systems, ICPADS 2021
作者: Zhou, Meng Zhou, Bowen Wang, Huitian Dong, Fang Zhao, Wei School of Computer Science and Engineering Southeast University Nanjing210000 China Institute for Artficial Intelligence Hefei Comprehensive National Science Center Hefei230000 China School of Computer Science and technology Anhui University of Technology Ma'anshan243000 China
Deep neural networks (DNNs) have achieved excellent performance in intelligent applications. Nevertheless, it is elusive for devices with limited resources to support computationally intensive DNNs, while employing th... 详细信息
来源: 评论