咨询与建议

限定检索结果

文献类型

  • 2,958 篇 会议
  • 39 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 3,004 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,759 篇 工学
    • 1,406 篇 计算机科学与技术...
    • 685 篇 软件工程
    • 489 篇 电气工程
    • 396 篇 信息与通信工程
    • 202 篇 控制科学与工程
    • 130 篇 生物工程
    • 78 篇 电子科学与技术(可...
    • 65 篇 生物医学工程(可授...
    • 58 篇 机械工程
    • 54 篇 仪器科学与技术
    • 49 篇 光学工程
    • 33 篇 网络空间安全
    • 30 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 材料科学与工程(可...
    • 22 篇 化学工程与技术
    • 20 篇 测绘科学与技术
    • 19 篇 石油与天然气工程
  • 516 篇 理学
    • 225 篇 物理学
    • 189 篇 数学
    • 143 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 40 篇 系统科学
    • 27 篇 化学
  • 203 篇 管理学
    • 135 篇 管理科学与工程(可...
    • 81 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 135 篇 医学
    • 112 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 37 篇 法学
    • 20 篇 社会学
  • 18 篇 文学
  • 14 篇 农学
  • 10 篇 教育学
  • 9 篇 经济学
  • 2 篇 军事学

主题

  • 590 篇 neural networks
  • 173 篇 training
  • 167 篇 artificial neura...
  • 164 篇 deep learning
  • 135 篇 computational mo...
  • 124 篇 feature extracti...
  • 115 篇 neural network
  • 114 篇 convolutional ne...
  • 88 篇 machine learning
  • 87 篇 neurons
  • 86 篇 parallel process...
  • 79 篇 deep neural netw...
  • 74 篇 computer archite...
  • 73 篇 distributed comp...
  • 65 篇 signal processin...
  • 62 篇 distributed proc...
  • 62 篇 accuracy
  • 60 篇 recurrent neural...
  • 55 篇 data models
  • 49 篇 convolutional ne...

机构

  • 11 篇 institute of inf...
  • 9 篇 school of cyber ...
  • 8 篇 univ chinese aca...
  • 8 篇 natl univ def te...
  • 7 篇 college of compu...
  • 7 篇 carnegie mellon ...
  • 7 篇 national laborat...
  • 7 篇 beijing universi...
  • 7 篇 natl univ def te...
  • 6 篇 shanghai jiao to...
  • 6 篇 the islamic univ...
  • 6 篇 department of co...
  • 5 篇 science and tech...
  • 5 篇 ibm tj watson re...
  • 5 篇 school of inform...
  • 5 篇 king saud univer...
  • 5 篇 shandong normal ...
  • 5 篇 kaust thuwal
  • 5 篇 university of ch...
  • 5 篇 natl univ def te...

作者

  • 8 篇 li dongsheng
  • 8 篇 dou yong
  • 8 篇 jie liu
  • 6 篇 richtarik peter
  • 6 篇 ribeiro alejandr...
  • 6 篇 liu jie
  • 6 篇 niu xin
  • 6 篇 yong dou
  • 6 篇 shulian yang
  • 6 篇 zhang wei
  • 5 篇 ryabinin max
  • 5 篇 segarra santiago
  • 5 篇 lai zhiquan
  • 5 篇 ding bo
  • 5 篇 qiao peng
  • 5 篇 xu jiren
  • 5 篇 kokkinos yiannis
  • 5 篇 peng yuxing
  • 5 篇 wang huaimin
  • 5 篇 li aiping

语言

  • 2,925 篇 英文
  • 71 篇 其他
  • 8 篇 中文
  • 2 篇 土耳其文
检索条件"任意字段=Conference on Neural Network and Distributed Processing"
3004 条 记 录,以下是1331-1340 订阅
排序:
CE-Dedup: Cost-Effective Convolutional neural Nets Training based on Image Deduplication
CE-Dedup: Cost-Effective Convolutional Neural Nets Training ...
收藏 引用
IEEE International conference on Big Data and Cloud Computing (BdCloud)
作者: Xuan Li Liqiong Chang Xue Liu School of Computer Science McGill University Montreal Quebec Canada
Attributed to the ever-increasing large image datasets, Convolutional neural networks (CNNs) have become popular for vision-based tasks. It is generally admirable to have larger-sized datasets for higher network train... 详细信息
来源: 评论
1st International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019 held in Conjunction with the 19th European conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2019
1st International Workshop on Multiple-Aspect Analysis of Se...
收藏 引用
1st International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019 held in Conjunction with the 19th European conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2019
The proceedings contain 9 papers. The special focus in this conference is on Multiple-Aspect Analysis of Semantic Trajectories. The topics include: Uncovering Hidden Concepts from AIS Data: A network Abstraction of Ma...
来源: 评论
2nd International conference on Computer Modeling, Simulation and Algorithm - Image processing, Pattern Recognition and Artificial Intelligence
2nd International Conference on Computer Modeling, Simulatio...
收藏 引用
2020 2nd International conference on Computer Modeling, Simulation and Algorithm, CMSA 2020
The proceedings contain 261 papers. The topics discussed include: MBSE-based modeling technology for aircraft assembly tooling design demand;modeling and implementation of distributed rain water storage and utilizatio...
来源: 评论
Field Independent Target Classification Analysis in distributed Acoustic Sensing Systems  27
Field Independent Target Classification Analysis in Distribu...
收藏 引用
27th Signal processing and Communications Applications conference (SIU)
作者: Maral, Hakan Aktas, Metin ASELSAN Ulasim Guvenlik Enerji & Otomasyon Sistemleri UGES Sekt Baskanligi Ankara Turkey
In this paper, we are able to focus on the fiber-optic distributed acoustic systems required to isolate the oil and gas pipeline, remote areas, facilities and lines in the area. Threatening performances of network str... 详细信息
来源: 评论
MapReduce-based Capsule networks  6
MapReduce-based Capsule Networks
收藏 引用
6th International conference on Social networks Analysis, Management and Security (SNAMS)
作者: Park, Sun Jin Park, Ho-Hyun LG CNS Seoul South Korea Chung Ang Univ Sch Elect & Elect Engn Seoul South Korea
Currently, artificial intelligence technology is attracting much attention, and image processing field is also making remarkable progress in recognition rate through CNN models. Furthermore, Capsule network which is f... 详细信息
来源: 评论
SPINN: Synergistic progressive inference of neural networks over device and cloud  20
SPINN: Synergistic progressive inference of neural networks ...
收藏 引用
26th Annual International conference on Mobile Computing and networking, MobiCom 2020
作者: Laskaridis, Stefanos Venieris, Stylianos I. Almeida, Mario Leontiadis, Ilias Lane, Nicholas D. Samsung AI Center Cambridge United Kingdom University of Cambridge United Kingdom
Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern C... 详细信息
来源: 评论
Communication-Efficient distributed Blockwise Momentum SGD with Error-Feedback  33
Communication-Efficient Distributed Blockwise Momentum SGD w...
收藏 引用
33rd conference on neural Information processing Systems (NeurIPS)
作者: Zheng, Shuai Huang, Ziyue Kwok, James T. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China Amazon Web Serv Seattle WA 98109 USA
Communication overhead is a major bottleneck hampering the scalability of distributed machine learning systems. Recently, there has been a surge of interest in using gradient compression to improve the communication e... 详细信息
来源: 评论
Revealing and protecting labels in distributed training  21
Revealing and protecting labels in distributed training
收藏 引用
Proceedings of the 35th International conference on neural Information processing Systems
作者: Trung Dang Om Thakkar Swaroop Ramaswamy Rajiv Mathews Peter Chin Françoise Beaufays Boston University Google
distributed learning paradigms such as federated learning often involve transmission of model updates, or gradients, over a network, thereby avoiding transmission of private data. However, it is possible for sensitive...
来源: 评论
A Framework for Deep Q-Learning Based Hybrid DVFS Algorithms for Real-Time Systems
A Framework for Deep Q-Learning Based Hybrid DVFS Algorithms...
收藏 引用
IEEE International conference on Big Data and Cloud Computing (BdCloud)
作者: Ke Yu Hongwang Xiao Ying Zhao Jiao Tian Jinjun Chen Swinburne University of Technology Hawthorn VIC Australia
In real-time systems, energy consumption is one of the most critical challenges. Dynamic voltage and frequency scaling (DVFS) algorithms have been widely applied to balance the trade-off between performance and power ... 详细信息
来源: 评论
FGPA: Fine-Grained Pipelined Acceleration for Depthwise Separable CNN in Resource Constraint Scenarios
FGPA: Fine-Grained Pipelined Acceleration for Depthwise Sepa...
收藏 引用
IEEE International conference on Big Data and Cloud Computing (BdCloud)
作者: Chunhua Xiao Dandan Xu Shi Qiu Chen Shi Kun Ning College of Computer Science Chongqing University Chongqing China
Depthwise Separable Convolution can effectively reduce parameters and operations with little loss in precision, which becomes more and more popular in many innovative neural networks such as MobileNet and Xception. Du... 详细信息
来源: 评论