咨询与建议

限定检索结果

文献类型

  • 2,958 篇 会议
  • 39 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 3,004 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,759 篇 工学
    • 1,406 篇 计算机科学与技术...
    • 685 篇 软件工程
    • 489 篇 电气工程
    • 396 篇 信息与通信工程
    • 202 篇 控制科学与工程
    • 130 篇 生物工程
    • 78 篇 电子科学与技术(可...
    • 65 篇 生物医学工程(可授...
    • 58 篇 机械工程
    • 54 篇 仪器科学与技术
    • 49 篇 光学工程
    • 33 篇 网络空间安全
    • 30 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 材料科学与工程(可...
    • 22 篇 化学工程与技术
    • 20 篇 测绘科学与技术
    • 19 篇 石油与天然气工程
  • 516 篇 理学
    • 225 篇 物理学
    • 189 篇 数学
    • 143 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 40 篇 系统科学
    • 27 篇 化学
  • 203 篇 管理学
    • 135 篇 管理科学与工程(可...
    • 81 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 135 篇 医学
    • 112 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 37 篇 法学
    • 20 篇 社会学
  • 18 篇 文学
  • 14 篇 农学
  • 10 篇 教育学
  • 9 篇 经济学
  • 2 篇 军事学

主题

  • 590 篇 neural networks
  • 173 篇 training
  • 167 篇 artificial neura...
  • 164 篇 deep learning
  • 135 篇 computational mo...
  • 124 篇 feature extracti...
  • 115 篇 neural network
  • 114 篇 convolutional ne...
  • 88 篇 machine learning
  • 87 篇 neurons
  • 86 篇 parallel process...
  • 79 篇 deep neural netw...
  • 74 篇 computer archite...
  • 73 篇 distributed comp...
  • 65 篇 signal processin...
  • 62 篇 distributed proc...
  • 62 篇 accuracy
  • 60 篇 recurrent neural...
  • 55 篇 data models
  • 49 篇 convolutional ne...

机构

  • 11 篇 institute of inf...
  • 9 篇 school of cyber ...
  • 8 篇 univ chinese aca...
  • 8 篇 natl univ def te...
  • 7 篇 college of compu...
  • 7 篇 carnegie mellon ...
  • 7 篇 national laborat...
  • 7 篇 beijing universi...
  • 7 篇 natl univ def te...
  • 6 篇 shanghai jiao to...
  • 6 篇 the islamic univ...
  • 6 篇 department of co...
  • 5 篇 science and tech...
  • 5 篇 ibm tj watson re...
  • 5 篇 school of inform...
  • 5 篇 king saud univer...
  • 5 篇 shandong normal ...
  • 5 篇 kaust thuwal
  • 5 篇 university of ch...
  • 5 篇 natl univ def te...

作者

  • 8 篇 li dongsheng
  • 8 篇 dou yong
  • 8 篇 jie liu
  • 6 篇 richtarik peter
  • 6 篇 ribeiro alejandr...
  • 6 篇 liu jie
  • 6 篇 niu xin
  • 6 篇 yong dou
  • 6 篇 shulian yang
  • 6 篇 zhang wei
  • 5 篇 ryabinin max
  • 5 篇 segarra santiago
  • 5 篇 lai zhiquan
  • 5 篇 ding bo
  • 5 篇 qiao peng
  • 5 篇 xu jiren
  • 5 篇 kokkinos yiannis
  • 5 篇 peng yuxing
  • 5 篇 wang huaimin
  • 5 篇 li aiping

语言

  • 2,925 篇 英文
  • 71 篇 其他
  • 8 篇 中文
  • 2 篇 土耳其文
检索条件"任意字段=Conference on Neural Network and Distributed Processing"
3004 条 记 录,以下是1371-1380 订阅
排序:
A novel deep neural design and efficient Pipeline architecture for Person Re-Identification in high resolution Video
A novel deep neural design and efficient Pipeline architectu...
收藏 引用
International Communication Systems and networks and Workshops, COMSNETS
作者: Govardhan Mattela Manmohan Tripathi Chandrajit Pal Indian Institute of Technology (IIT) Hyderabad India Ceremorphic India Pvt Ltd
The primary objective of person re-identification (Re-ID) is to retrieve a person of interest across different nonintersecting cameras for managing in distributed surveillance systems. This has added to its increasing... 详细信息
来源: 评论
Signal Analysis of distributed Optic-Fiber Sensing Used for Oil and Gas Pipeline Monitoring  2019
Signal Analysis of Distributed Optic-Fiber Sensing Used for ...
收藏 引用
International Symposium on Signal processing Systems (SPSS) / International conference on Natural Language processing (ICNLP)
作者: Yang, Yue Li, Jun Tian, Ming Zhou, Yang Dong, Lei He, Jing Xin Wuhan WUTOS CO LTO Univ Pk Rd 23 Eastlake Development Dis Peoples R China Sinopec Pipeline Storage & Transportat Co LTD Xuzhou Quanshan Dist South Rd 1 Xuzhou Jiangsu Peoples R China
distributed optic-fiber sensing technology based on coherent Rayleigh scattering can use optical fiber cable laying along with pipeline as vibration sensor, to give early-warning of the third-party threaten and even d... 详细信息
来源: 评论
Limitations of Lazy Training of Two-layers neural networks  33
Limitations of Lazy Training of Two-layers Neural Networks
收藏 引用
33rd conference on neural Information processing Systems (NeurIPS)
作者: Ghorbani, Behrooz Mei, Song Misiakiewicz, Theodor Montanari, Andrea Stanford Univ Dept Elect Engn Stanford CA 94305 USA Stanford Univ ICME Stanford CA 94305 USA Stanford Univ Dept Stat Stanford CA 94305 USA
We study the supervised learning problem under either of the following two models: (1) Feature vectors xi are d-dimensional Gaussians and responses are y(i) = f(*) (x(i)) for f(*) an unknown quadratic function;(2) Fea... 详细信息
来源: 评论
Modeling a H-H Neuron based Spiking neural network incorporating Multiple Pre-synaptic Inputs  2
Modeling a H-H Neuron based Spiking Neural Network incorpora...
收藏 引用
2nd International conference on Innovations in Electronics, Signal processing and Communication, IESC 2019
作者: Gogoi, Plabita Roy, Soumik Bujarbaruah, Satyabrat Malla Tezpur University Department of Electronics and Communication Engineering Tezpur India
Spiking neural networks (SNN) is the latest generation of Artificial neural networks that draws strength from the capability to closely mimic its biological counterpart. The choice of the spiking neuron that constitut... 详细信息
来源: 评论
MATE: benchmarking multi-agent reinforcement learning in distributed target coverage control  22
MATE: benchmarking multi-agent reinforcement learning in dis...
收藏 引用
Proceedings of the 36th International conference on neural Information processing Systems
作者: Xuehai Pan Mickel Liu Fangwei Zhong Yaodong Yang Song-Chun Zhu Yizhou Wang School of Computer Science Peking University and Center on Frontiers of Computing Studies Peking University and Beijing Institute for General Artificial Intelligence (BIGAI) School of Intelligence Science and Technology Peking University and Beijing Institute for General Artificial Intelligence (BIGAI) School of Intelligence Science and Technology Peking University and Institute for Artificial Intelligence Peking University and Beijing Institute for General Artificial Intelligence (BIGAI) School of Intelligence Science and Technology Peking University and Institute for Artificial Intelligence Peking University and Beijing Institute for General Artificial Intelligence (BIGAI) and Department of Automation Tsinghua University School of Computer Science Peking University and Center on Frontiers of Computing Studies Peking University and Institute for Artificial Intelligence Peking University
We introduce the Multi-Agent Tracking Environment (MATE), a novel multi-agent environment simulates the target coverage control problems in the real world. MATE hosts an asymmetric cooperative-competitive game consist...
来源: 评论
Implementation of energy efficient homogenous MPSOC display device trained using NN in FPGA  5
Implementation of energy efficient homogenous MPSOC display ...
收藏 引用
5th International conference on Computing, Communication Control and Automation (ICCUBEA)
作者: Khan, Masroor Jadhav, Usha DY Patil Coll Engn Akurdi Elect & Telecommun Pune Maharashtra India
Artificial neural networks (ANN) are computational models which work similar to human nervous system. Back propagation is one of the method of ANN within Convolutional neural network (CNN) that means "the backwar... 详细信息
来源: 评论
Putting An End to End-to-End: Gradient-Isolated Learning of Representations  33
Putting An End to End-to-End: Gradient-Isolated Learning of ...
收藏 引用
33rd conference on neural Information processing Systems (NeurIPS)
作者: Lowe, Sindy O'Connor, Peter Veeling, Bastiaan S. Univ Amsterdam AMLab Amsterdam Netherlands
We propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead. Inspired by the obs... 详细信息
来源: 评论
Accelerated Inference Framework of Sparse neural network Based on Nested Bitmask Structure  28
Accelerated Inference Framework of Sparse Neural Network Bas...
收藏 引用
28th International Joint conference on Artificial Intelligence
作者: Zhang, Yipeng Du, Bo Zhang, Lefei Li, Rongchun Dou, Yong Wuhan Univ Sch Comp Sci Wuhan Peoples R China Natl Univ Def Technol Natl Lab Parallel & Distributed Proc Changsha Peoples R China
In order to satisfy the ever-growing demand for high-performance processors for neural networks, the state-of-the-art processing units tend to use application-oriented circuits to replace processing Engine (PE) on the...
来源: 评论
TRAINING DYNAMIC EXPONENTIAL FAMILY MODELS WITH CAUSAL AND LATERAL DEPENDENCIES FOR GENERALIZED NEUROMORPHIC COMPUTING  44
TRAINING DYNAMIC EXPONENTIAL FAMILY MODELS WITH CAUSAL AND L...
收藏 引用
44th IEEE International conference on Acoustics, Speech and Signal processing (ICASSP)
作者: Jang, Hyeryung Simeone, Osvaldo Kings Coll London Dept Informat London England
Neuromorphic hardware platforms, such as Intel's Loihi chip, support the implementation of Spiking neural networks (SNNs) as an energy-efficient alternative to Artificial neural networks (ANNs). SNNs are networks ... 详细信息
来源: 评论
distributed DNN Based User Association and Resource Optimization in mmWave networks
Distributed DNN Based User Association and Resource Optimiza...
收藏 引用
IEEE Global Communications conference (IEEE GLOBECOM)
作者: Zhang, Haisen Zhang, Haijun Wei Huangfu Liu, Wei Dong, Jiangbo Long, Keping Nallanathan, Arumugam Univ Sci & Technol Beijing Inst Artificial Intelligence Beijing Engn & Technol Res Ctr Convergence Networ Beijing Peoples R China China Mobile Grp Design Inst Co Ltd Beijing Peoples R China Queen Mary Univ London London England
Millimeter wave (mmWave) communication technology has become an attractive solution to meet exponential growth demand for mobile data services. In this paper, we propose a deep neural networks (DNN) based algorithm fo... 详细信息
来源: 评论