咨询与建议

限定检索结果

文献类型

  • 2,952 篇 会议
  • 39 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 2,998 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,753 篇 工学
    • 1,402 篇 计算机科学与技术...
    • 683 篇 软件工程
    • 488 篇 电气工程
    • 394 篇 信息与通信工程
    • 200 篇 控制科学与工程
    • 130 篇 生物工程
    • 78 篇 电子科学与技术(可...
    • 65 篇 生物医学工程(可授...
    • 58 篇 机械工程
    • 54 篇 仪器科学与技术
    • 48 篇 光学工程
    • 33 篇 网络空间安全
    • 30 篇 动力工程及工程热...
    • 24 篇 安全科学与工程
    • 23 篇 材料科学与工程(可...
    • 22 篇 化学工程与技术
    • 20 篇 测绘科学与技术
    • 19 篇 石油与天然气工程
  • 515 篇 理学
    • 225 篇 物理学
    • 188 篇 数学
    • 143 篇 生物学
    • 57 篇 统计学(可授理学、...
    • 40 篇 系统科学
    • 27 篇 化学
  • 203 篇 管理学
    • 135 篇 管理科学与工程(可...
    • 81 篇 图书情报与档案管...
    • 31 篇 工商管理
  • 135 篇 医学
    • 112 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 37 篇 法学
    • 20 篇 社会学
  • 18 篇 文学
  • 14 篇 农学
  • 10 篇 教育学
  • 9 篇 经济学
  • 2 篇 军事学

主题

  • 590 篇 neural networks
  • 173 篇 training
  • 167 篇 artificial neura...
  • 164 篇 deep learning
  • 135 篇 computational mo...
  • 124 篇 feature extracti...
  • 115 篇 neural network
  • 114 篇 convolutional ne...
  • 88 篇 machine learning
  • 87 篇 neurons
  • 86 篇 parallel process...
  • 79 篇 deep neural netw...
  • 74 篇 computer archite...
  • 73 篇 distributed comp...
  • 65 篇 signal processin...
  • 62 篇 distributed proc...
  • 62 篇 accuracy
  • 60 篇 recurrent neural...
  • 55 篇 data models
  • 49 篇 convolutional ne...

机构

  • 11 篇 institute of inf...
  • 9 篇 school of cyber ...
  • 8 篇 univ chinese aca...
  • 8 篇 natl univ def te...
  • 7 篇 college of compu...
  • 7 篇 carnegie mellon ...
  • 7 篇 national laborat...
  • 7 篇 beijing universi...
  • 7 篇 natl univ def te...
  • 6 篇 shanghai jiao to...
  • 6 篇 the islamic univ...
  • 6 篇 department of co...
  • 5 篇 science and tech...
  • 5 篇 ibm tj watson re...
  • 5 篇 school of inform...
  • 5 篇 king saud univer...
  • 5 篇 shandong normal ...
  • 5 篇 kaust thuwal
  • 5 篇 university of ch...
  • 5 篇 natl univ def te...

作者

  • 8 篇 li dongsheng
  • 8 篇 dou yong
  • 8 篇 jie liu
  • 6 篇 richtarik peter
  • 6 篇 ribeiro alejandr...
  • 6 篇 liu jie
  • 6 篇 niu xin
  • 6 篇 yong dou
  • 6 篇 shulian yang
  • 6 篇 zhang wei
  • 5 篇 ryabinin max
  • 5 篇 segarra santiago
  • 5 篇 lai zhiquan
  • 5 篇 ding bo
  • 5 篇 qiao peng
  • 5 篇 xu jiren
  • 5 篇 kokkinos yiannis
  • 5 篇 peng yuxing
  • 5 篇 wang huaimin
  • 5 篇 li aiping

语言

  • 2,943 篇 英文
  • 47 篇 其他
  • 8 篇 中文
  • 2 篇 土耳其文
检索条件"任意字段=Conference on Neural Network and Distributed Processing"
2998 条 记 录,以下是451-460 订阅
排序:
Quantum-Train with Tensor network Mapping Model and distributed Circuit Ansatz
Quantum-Train with Tensor Network Mapping Model and Distribu...
收藏 引用
International conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Chen-Yu Liu Chu-Hsuan Abraham Lin Kuan-Cheng Chen Graduate Institute of Applied Physics National Taiwan University Taipei Taiwan Department of Electrical and Electronic Engineering Imperial College London London UK Centre for Quantum Engineering Science and Technology (QuEST) Imperial College London London UK
In the Quantum-Train (QT) framework, mapping quantum state measurements to classical neural network weights is a critical challenge that affects the scalability and efficiency of hybrid quantum-classical models. The t... 详细信息
来源: 评论
A Survey of Class Activation Mapping for the Interpretability of Convolution neural networks  10th
A Survey of Class Activation Mapping for the Interpretabilit...
收藏 引用
10th International conference on Signal and Information processing, network and Computers, ICSINC 2022
作者: He, Mingwei Li, Bohan Sun, Songlin Beijing University of Posts and Telecommunications Beijing100876 China School of Electronics and Computer Science University of Southampton SouthamptonSO17 1BJ United Kingdom
Recent advances in deep learning have brought a new era for many fields, including object identification, image classification, and image compression. These tasks mostly build models based on the convolutional neural ... 详细信息
来源: 评论
neural Analogical Reasoning  16
Neural Analogical Reasoning
收藏 引用
16th International Workshop on neural-Symbolic Learning and Reasoning (NeSy) as part of the 2nd International Joint conference on Learning and Reasoning (IJCLR)
作者: Sonwane, Atharv Lalwani, Abhinav Mahajan, Sweta Shroff, Gautam Vig, Lovekesh BITS Pilani APPCAIR KK Birla Goa Campus Sancoale India Indian Inst Technol Delhi India TCS Res New Delhi India
Symbolic systems excel at reusing and composing modular functional units when solving problems such as simple analogical reasoning. However, they are less amenable to processing real-world data (e.g. images), and rely... 详细信息
来源: 评论
Handwritten Digit Recognition Based on Deep Learning Algorithms
Handwritten Digit Recognition Based on Deep Learning Algorit...
收藏 引用
2023 International conference on Internet of Things, Robotics and distributed Computing, ICIRDC 2023
作者: Lv, Xue Wuhan Donghu University Hubei Wuhan430212 China
In the digital age, handwritten digit recognition plays a crucial role in various automation systems, ranging from simple form data automation to complex security systems. Deep learning, particularly Convolutional Neu... 详细信息
来源: 评论
splitDyn: Federated Split neural network for distributed Edge AI Applications
splitDyn: Federated Split Neural Network for Distributed Edg...
收藏 引用
2022 IEEE International conference on Big Data, Big Data 2022
作者: Khoa, Tran Anh Nguyen, Do-Van Dao, Minh-Son Zettsu, Koji National Institute of Information and Communications Technology Big Data Integration Research Center Tokyo Japan
Split learning (SL) is a popular distributed machine learning (ML) method used to enable ML. It divides a neural network based model into subnetworks. Then, it separately trains the subnetworks on distributed parties ... 详细信息
来源: 评论
Domain-Aware Model Training as a Service for Use-Inspired Models  12
Domain-Aware Model Training as a Service for Use-Inspired Mo...
收藏 引用
12th International conference on Cloud Engineering
作者: Zhang, Zichen Stewart, Christopher Ohio State Univ Columbus OH 43210 USA
Use-inspired artificial intelligence (AI) tailors deep-learning models for image processing tasks in targeted scientific domains. These use-inspired models meet domain requirements for accuracy while parsimoniously us... 详细信息
来源: 评论
ADE-HGNN: Accelerating HGNNs Through Attention Disparity Exploitation  30th
ADE-HGNN: Accelerating HGNNs Through Attention Disparity Exp...
收藏 引用
30th European conference on Parallel and distributed processing (Euro-Par)
作者: Han, Dengke Wu, Meng Xue, Runzhen Yan, Mingyu Ye, Xiaochun Fan, Dongrui Chinese Acad Sci SKLP Inst Comp Technol Beijing Peoples R China
Heterogeneous Graph neural networks (HGNNs) have recently demonstrated great power in handling heterogeneous graph data, rendering them widely applied in many critical real-world domains. Most HGNN models leverage att... 详细信息
来源: 评论
Applications of Large-Scale Quantum neural networks Based on distributed Quantum Computing
Applications of Large-Scale Quantum Neural Networks Based on...
收藏 引用
International conference on Wireless Communications and Signal processing (WCSP)
作者: Yin Kan Junyuan He Cheng Xue AHU-IAI AI Joint Laboratory Anhui University Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Hefei China Institute of Artificial Intelligence Comprehensive National Science Center Hefei China
This research investigates the limitations of current quantum hardware in fulfilling the computational demands of quantum neural networks. It introduces an optimized circuit computed method leveraging bit splitting wi... 详细信息
来源: 评论
QRELATION: AN AGENT RELATION-BASED APPROACH FOR MULTI-AGENT REINFORCEMENT LEARNING VALUE FUNCTION FACTORIZATION  47
QRELATION: AN AGENT RELATION-BASED APPROACH FOR MULTI-AGENT ...
收藏 引用
47th IEEE International conference on Acoustics, Speech and Signal processing (ICASSP)
作者: Shen, Siqi Liu, Jun Qiu, Mengwei Liu, Weiquan Wang, Cheng Fu, Yongquan Wang, Qinglin Qiao, Peng Xiamen Univ Sch Informat Fujian Key Lab Sensing & Comp Smart Cities Xiamen Peoples R China Natl Univ Def Technol Parallel & Distributed Proc Lab Changsha Peoples R China
The Centralized Training with Decentralized Execution paradigm (CTDE), which trains policies centrally with additional information, is important for Multi-Agent Reinforcement Learning (MARL). For CTDE, value function ... 详细信息
来源: 评论
HIANet: Hierarchical Interweaved Aggregation network for Crowd Counting  28th
HIANet: Hierarchical Interweaved Aggregation Network for Cro...
收藏 引用
28th International conference on neural Information processing
作者: Xie, Jinyang Zheng, Jinfang Gu, Lingyu Lyu, Chen Lyu, Lei Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Peoples R China Shandong Prov Key Lab Distributed Comp Software N Jinan 250358 Peoples R China
Aiming at scale variation in crowd counting, we consider that an optimal solution is to take full advantage of the complementarity between multi-scale features. To implement this idea, we devise a Hierarchical Interwe... 详细信息
来源: 评论