High-resolution micro-CT scanners permit the generation of three-dimensional (3D) digital images containing extensive vascular networks. These images provide data needed to study the overall structure and function of ...
详细信息
High-resolution micro-CT scanners permit the generation of three-dimensional (3D) digital images containing extensive vascular networks. These images provide data needed to study the overall structure and function of such complex networks. Unfortunately, human operators have extreme difficulty in extracting the hundreds of vascular segments contained in the images. Also, no suitable network representation exists that permits straightforward structural analysis and information retrieval. This work proposes an automatic procedure for extracting and analyzing the vascular network contained in very large 3D CT images, such as can be generated by 3D micro-CT and by helical CT scanners. The procedure is efficient in terms of both execution time and memory usage. As results demonstrate, the procedure faithfully follows human-defined measurements and provides far more information than can be defined interactively.
Computerized volumetric warping and registration of 3D lung images can provide objective, accurate, and reproducible measures to the understanding of human lung structure and function. It is also invaluable to the ass...
详细信息
Computerized volumetric warping and registration of 3D lung images can provide objective, accurate, and reproducible measures to the understanding of human lung structure and function. It is also invaluable to the assessment of the presence of diseases and their response to therapy. However, due to the complexity of breathing motion, little work has been carried out in this research area. In this paper, we propose a novel scheme to implement volumetric lung warping and registration from 3D CT images obtained at different stages of breathing. Bronchial points of airway trees and vessels are selected as feature points since they can be easily tracked over consecutive frames. The warping of these feature points into the entire volume is obtained based on a model of continuum mechanics and is implemented in an iteration fashion governed by such model. The model consists of three constraints: an incompressibility constraint, a divergence-free constraint and a motion-discontinuity-preserving smoothness constraint. An objective function is defined as a weighted sum of the three constraint terms and the desired displacement field of the whole volume between different stage of breathing is obtained by minimizing this objective function. The 3D warping is therefore represented by the dense displacement field obtained from the iteration. Preliminary results are visualized by overlaying the displacement field with the original images. Effectiveness of the algorithm is also evaluated by comparing the volume difference between the real and warped volumes. We believe the proposed approach will open up several areas of research in lung image analysis that can make use of the results from warping lung volumes.
High-speed filming is one of the most informative methods for assessing voice physiology data. Tracing high-speed images of the glottis provides quantitative parameters such as the glottal area and the glottal width f...
详细信息
High-speed filming is one of the most informative methods for assessing voice physiology data. Tracing high-speed images of the glottis provides quantitative parameters such as the glottal area and the glottal width function. By way of example, a number of studies are discussed which extract quantitative data from high-speed images showing voice onsets. Furthermore, a new computer system (MVAS;multi-dimensional voice analysis system) is presented that synchronously displays a laryngoscopic high-speed film, the electroglottographical signal, and several acoustic analyses of the recorded voice sample. The automatic measurement of glottal width and glottal area from the laryngoscopic images is also provided. Looking at former studies and our analyses of voice onsets reveals a tremendous intersubject and even intrasubject variability (different prephonatory closure, different time span until full amplitude is reached, different open quotient).
In recent years, with development of new MRI techniques, noninvasive evaluation of global and regional cardiac function is becoming a reality. One of the methods used for this purpose is MRI tagging. In tagging, spati...
详细信息
In recent years, with development of new MRI techniques, noninvasive evaluation of global and regional cardiac function is becoming a reality. One of the methods used for this purpose is MRI tagging. In tagging, spatially encoded magnetic saturation planes, tags, are created within tissues. These act as temporary markers and move with the tissue. In cardiac tagging, tag deformation pattern provides useful qualitative and quantitative information about the functional properties of underlying myocardium. The measured deformation of a single tag plane contains only unidirectional information of the past motion. In order to track the motion of a cardiac material point, this sparse, single dimensional data has to be combined with similar information gathered from other tag sets and all time frames. Previously, several methods have been developed which rely on the specific geometry of the chambers. Here, we employ an image plane based, simple cartesian coordinate system and provide a stepwise method to describe the heart motion using a four-dimensional tensor product of B-splines. The proposed displacement and forward motion fields exhibited sub-pixel accuracy. Since our motion fields are parametric and based on an image plane based coordinate system, trajectories or other derived values (velocity, acceleration, strains...) can be calculated for any desired point on the MRI images. This method is sufficiently general so that the motion of any tagged structure can be tracked.
A method for reconstructing the motion of the left ventricle (LV) using 4D planispheric transformations of time and space combined in a first step with B-spline tensor products is presented. Experiments are conducted ...
详细信息
A method for reconstructing the motion of the left ventricle (LV) using 4D planispheric transformations of time and space combined in a first step with B-spline tensor products is presented. Experiments are conducted on a normal and a pathological LV to assess the tuning of the parameters of the method. The motion is analyzed as smooth zeroth and first order parameters.
High-resolution micro-CT scanners permit the generation of three-dimensional (3D) digital images containing extensive vascular networks. These images provide data needed to study the overall structure and function of ...
详细信息
High-resolution micro-CT scanners permit the generation of three-dimensional (3D) digital images containing extensive vascular networks. These images provide data needed to study the overall structure and function of such complex networks. Unfortunately, human operators have extreme difficulty in extracting the hundreds of vascular segments contained in the images. Also, no suitable network representation exists that permits straightforward structural analysis and information retrieval. This work proposes an automatic procedure for extracting and analyzing the vascular network contained in very large 3D CT images, such as can be generated by 3D micro-CT and by helical CT scanners. The procedure is efficient in terms of both execution time and memory usage. As results demonstrate, the procedure faithfully follows human-defined measurements and provides far more information than can be defined interactively.
functional MRI (fMRI) is a means of analyzing localized brain activity. It is statistically modeled by the multivariate Gaussian probability distribution (in space) and the time series (in time). However, the currentl...
详细信息
functional MRI (fMRI) is a means of analyzing localized brain activity. It is statistically modeled by the multivariate Gaussian probability distribution (in space) and the time series (in time). However, the currently used analysis method takes an univariate approach. That is, the spatial relationships among voxels are ignored. This paper presents a multivariate analysis method. It formulates fMRI activation foci detection as a sensor-array signal processing problem and converts hypotheses tests of the univariate approach to a computer vision approach. It first creates multiple independent, identical sub-images and then uses a covariance matrix to characterize the multivariate Gaussian environment. Not only it utilizes the voxel intensities but also their spatio-temporal relationships. It achieves computer speed superiority over the existing methods. Results obtained by using simulated images, phantom images, and real fMRI data are included. The theoretical and experimental results obtained by using this approach were in good agreement.
Computerized volumetric warping and registration of 3D lung images can provide objective, accurate, and reproducible measures to the understanding of human lung structure and function. It is also invaluable to the ass...
详细信息
Computerized volumetric warping and registration of 3D lung images can provide objective, accurate, and reproducible measures to the understanding of human lung structure and function. It is also invaluable to the assessment of the presence of diseases and their response to therapy. However, due to the complexity of breathing motion, little work has been carried out in this research area. In this paper, we propose a novel scheme to implement volumetric lung warping and registration from 3D CT images obtained at different stages of breathing. Bronchial points of airway trees and vessels are selected as feature points since they can be easily tracked over consecutive frames. The warping of these feature points into the entire volume is obtained based on a model of continuum mechanics and is implemented in an iteration fashion governed by such model. The model consists of three constraints: an incompressibility constraint, a divergence-free constraint and a motion-discontinuity-preserving smoothness constraint. An objective function is defined as a weighted sum of the three constraint terms and the desired displacement field of the whole volume between different stage of breathing is obtained by minimizing this objective function. The 3D warping is therefore represented by the dense displacement field obtained from the iteration. Preliminary results are visualized by overlaying the displacement field with the original images. Effectiveness of the algorithm is also evaluated by comparing the volume difference between the real and warped volumes. We believe the proposed approach will open up several areas of research in lung image analysis that can make use of the results from warping lung volumes.
In recent years, with development of new MRI techniques, noninvasive evaluation of global and regional cardiac function is becoming a reality. One of the methods used for this purpose is MRI tagging. In tagging, spati...
详细信息
In recent years, with development of new MRI techniques, noninvasive evaluation of global and regional cardiac function is becoming a reality. One of the methods used for this purpose is MRI tagging. In tagging, spatially encoded magnetic saturation planes, tags, are created within tissues. These act as temporary markers and move with the tissue. In cardiac tagging, tag deformation pattern provides useful qualitative and quantitative information about the functional properties of underlying myocardium. The measured deformation of a single tag plane contains only unidirectional information of the past motion. In order to track the motion of a cardiac material point, this sparse, single dimensional data has to be combined with similar information gathered from other tag sets and all time frames. Previously, several methods have been developed which rely on the specific geometry of the chambers. Here, we employ an image plane based, simple cartesian coordinate system and provide a stepwise method to describe the heart motion using a four-dimensional tensor product of B-splines. The proposed displacement and forward motion fields exhibited sub-pixel accuracy. Since our motion fields are parametric and based on an image plane based coordinate system, trajectories or other derived values (velocity, acceleration, strains...) can be calculated for any desired point on the MRI images. This method is sufficiently general so that the motion of any tagged structure can be tracked.
The proceedings contains 39 papers from SPIE: Medical Imaging 1998-physiology and functionfrommultidimensionalimages. Topics discussed include: automated assessment of split lung function in post-lung-transplant ev...
详细信息
The proceedings contains 39 papers from SPIE: Medical Imaging 1998-physiology and functionfrommultidimensionalimages. Topics discussed include: automated assessment of split lung function in post-lung-transplant evaluation;microfocal angiography of the pulmonary vasculature;optimization of CT scan with predictive contrast monitoring and automatic axis generation for 3D virtual-bronchoscopic image assessment.
暂无评论