咨询与建议

限定检索结果

文献类型

  • 4,363 篇 会议
  • 100 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 4,465 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,345 篇 工学
    • 1,092 篇 信息与通信工程
    • 1,060 篇 计算机科学与技术...
    • 705 篇 电气工程
    • 642 篇 软件工程
    • 442 篇 控制科学与工程
    • 279 篇 测绘科学与技术
    • 255 篇 仪器科学与技术
    • 247 篇 电子科学与技术(可...
    • 206 篇 光学工程
    • 202 篇 机械工程
    • 197 篇 交通运输工程
    • 169 篇 航空宇航科学与技...
    • 121 篇 土木工程
    • 95 篇 建筑学
    • 86 篇 安全科学与工程
    • 75 篇 材料科学与工程(可...
    • 69 篇 生物工程
    • 63 篇 环境科学与工程(可...
    • 59 篇 生物医学工程(可授...
  • 1,012 篇 理学
    • 643 篇 物理学
    • 191 篇 数学
    • 73 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 57 篇 大气科学
    • 56 篇 化学
    • 55 篇 系统科学
  • 297 篇 管理学
    • 201 篇 管理科学与工程(可...
    • 123 篇 图书情报与档案管...
    • 109 篇 工商管理
  • 256 篇 医学
    • 248 篇 临床医学
  • 37 篇 农学
  • 29 篇 经济学
  • 26 篇 军事学
  • 25 篇 法学
  • 12 篇 教育学
  • 8 篇 文学

主题

  • 549 篇 laser radar
  • 517 篇 visualization
  • 383 篇 data visualizati...
  • 342 篇 radar
  • 302 篇 sensors
  • 301 篇 sensor systems
  • 281 篇 wireless sensor ...
  • 262 篇 three-dimensiona...
  • 232 篇 sensor fusion
  • 229 篇 synthetic apertu...
  • 224 篇 cameras
  • 218 篇 radar tracking
  • 212 篇 real-time system...
  • 207 篇 monitoring
  • 161 篇 radar imaging
  • 160 篇 robot sensing sy...
  • 160 篇 accuracy
  • 152 篇 target tracking
  • 132 篇 feature extracti...
  • 121 篇 object detection

机构

  • 26 篇 penn state univ ...
  • 18 篇 res lab adelphi ...
  • 16 篇 lincoln laborato...
  • 15 篇 sandia natl labs...
  • 14 篇 us army res lab ...
  • 9 篇 penn state univ ...
  • 9 篇 jet propulsion l...
  • 8 篇 consultant
  • 8 篇 sandia natl labs...
  • 7 篇 school of inform...
  • 6 篇 university of sc...
  • 6 篇 sandia natl labs...
  • 6 篇 shibaura institu...
  • 6 篇 research center ...
  • 6 篇 massachusetts in...
  • 6 篇 sandia natl labs...
  • 6 篇 villanova univ c...
  • 6 篇 univ st andrews ...
  • 5 篇 department of ea...
  • 5 篇 beijing key labo...

作者

  • 32 篇 narayanan ram m.
  • 20 篇 ranney kenneth
  • 13 篇 sherbondy kelly ...
  • 12 篇 zhang yan (rocke...
  • 12 篇 doerry a. w.
  • 11 篇 ahmad fauzia
  • 10 篇 dogaru traian
  • 10 篇 gallagher kyle a...
  • 9 篇 amin moeness g.
  • 9 篇 kirose getachew
  • 8 篇 gerd wanielik
  • 8 篇 lam nguyen
  • 8 篇 martone anthony
  • 8 篇 nguyen lam
  • 8 篇 sherbondy kelly
  • 7 篇 ming liu
  • 7 篇 nguyen lam h.
  • 7 篇 rahman samiur
  • 7 篇 robert weigel
  • 7 篇 ryoichi shinkuma

语言

  • 4,393 篇 英文
  • 33 篇 中文
  • 32 篇 其他
  • 3 篇 德文
  • 3 篇 土耳其文
  • 2 篇 西班牙文
检索条件"任意字段=Conference on Radar Sensor Technology and Data Visualization"
4465 条 记 录,以下是81-90 订阅
排序:
Multi-sensor Fusion Localization Algorithms for Intelligent Agricultural Unmanned Vehicles in Complex Environments
Multi-Sensor Fusion Localization Algorithms for Intelligent ...
收藏 引用
2024 International conference on Innovative Design and Intelligent Manufacturing, IDIM 2024
作者: Yang, Kaihang Wang, Xiaodong Zhao, Hongyang Wen, Haojie Qin, Jinyan Wang, Ziheng Liaoning Institute of Science and Technology Benxi117004 China
In order to solve the problems of short-time data loss, low positioning accuracy and asynchronous sensor frequency of agricultural unmanned vehicles, the application of multi-sensor fusion positioning algorithm of int... 详细信息
来源: 评论
Development of a Flexible and User-Friendly UI to Visualize the Invisible Pressure Distribution
Development of a Flexible and User-Friendly UI to Visualize ...
收藏 引用
Gaming, Entertainment and Media conference (GEM)
作者: Minakawa, Keigo Sato, Kazuma Jing, Lei Univ Aizu Aizu Wakamatsu Fukushima Japan
In this study, we propose a method to facilitate the observation and analysis of pressure data. In modern times, research utilizing pressure is advancing in various fields. However, the aspect of visualizing invisible... 详细信息
来源: 评论
A Study on Point Cloud Clustering for Geo-referenced Positioning using mmWave radar sensor  29
A Study on Point Cloud Clustering for Geo-referenced Positio...
收藏 引用
29th IEEE Asia Pacific conference on Communications, APCC 2024
作者: Park, Daeseung Choi, Jaemin Chang, Hojong Lee, Chae-Seok Kaist Convergence Research Center for College of Engineering Daejeon Korea Republic of
In the field of urban safety, extensive research is being conducted on the application of mmWave radar sensors for both indoor and outdoor environments. These advanced sensing technologies are gaining attention due to... 详细信息
来源: 评论
Harnessing Machine Learning based sequence prediction for Industry 4.0 applications  15
Harnessing Machine Learning based sequence prediction for In...
收藏 引用
15th International conference on Computing Communication and Networking Technologies, ICCCNT 2024
作者: Kanagachidambaresan, G.R. Arun, C.A. Subashini, M. Maheswaran, S. VelTech Rangarajan Dr.Sagunthala R&d institute of Science and Technology Dept of Cse Chennai India VelTech Rangarajan Dr.Sagunthala R&d institute of Science and Technology Dept of Ece Chennai India VelTec Rangarajan Dr.Sagunthala R&d institute of Science and Technology Jrf IoT Experts System Laboratory Chennai India Kongu Engineering College Department of Electronics and Communication Engineering Perundurai India
This paper focuses on the utilization of gyro sensor data, particularly from the MPU6050 sensor, for sequence prediction and positional analysis for many Industry 4.0 application and asset monitoring. Leveraging machi... 详细信息
来源: 评论
Non-contact sensor-based human fall detection method  3
Non-contact sensor-based human fall detection method
收藏 引用
3rd International conference on Biomedical and Intelligent Systems, IC-BIS 2024
作者: Ruan, Tingting Yan, Tianxing Song, Yongkun Zhang, Ke Liu, Xian Changsha Health Vlocational College ChangSha41000 China Changsha University of Science & Technology Changsha410000 China
With the exacerbation of global population aging, the issue of falls among the elderly is increasingly drawing attention from various sectors of society. Consequently, the development of an effective human fall detect... 详细信息
来源: 评论
Enhancing the Survivability of UAV using Multi-sensor data Fusion
Enhancing the Survivability of UAV using Multi-Sensor Data F...
收藏 引用
2024 IEEE International conference on Information technology, Electronics and Intelligent Communication Systems, ICITEICS 2024
作者: Hizkial, Shiba Azam, Farooque School of Computer Science and Engineering Reva University Bengaluru India
sensor data fusion helps to derive more specific inferences than what could be achieved using a single independent sensor. Multi-sensor data Fusion (MSDF) technology enhance the capability of improving accuracy, infor... 详细信息
来源: 评论
radar Target Detection Method through Spatial Voxelization in Complex Indoor Environment
Radar Target Detection Method through Spatial Voxelization i...
收藏 引用
2023 IEEE International conference on Consumer Electronics-Asia, ICCE-Asia 2023
作者: Lee, Jaewon Jang, Dalwon Lee, JongSeol Information Media Research Center Korea Republic of
This paper is about a method for extracting the target point of a signal received from a radar sensor through spatial voxelization in an indoor environment with many metal objects such as partitions, PCs, and monitors... 详细信息
来源: 评论
RESEARCH ON MULTI-sensor FUSION technology OF PERCEPTUAL sensorS IN DRIVERLESS VEHICLES  2
RESEARCH ON MULTI-SENSOR FUSION TECHNOLOGY OF PERCEPTUAL SEN...
收藏 引用
2nd International conference on Mechatronic Automation and Electrical Engineering, ICMAEE 2024
作者: Xie, Yinxin Shandong Agricultural University Taian271018 China
Self-driving vehicles need to detect the environment, systematically process the input data make decisions, and assign tasks to the executing agency until the task is executed. The environmental data processed by the ... 详细信息
来源: 评论
Multi-Band Hybrid Active-Passive radar sensor Fusion
Multi-Band Hybrid Active-Passive Radar Sensor Fusion
收藏 引用
IEEE radar conference (radarConf)
作者: Beasley, Piers J. Ritchie, Matthew A. UCL Dept Elect & Elect Engn London England
In this paper the topic of joint active and passive (hybrid) radar detection is introduced and the theoretical benefits are outlined. An experimental hybrid radar setup is presented where a low-cost Software Defined R... 详细信息
来源: 评论
radar Signal Abnormal Point Classification based on Camera-radar sensor Fusion  5
Radar Signal Abnormal Point Classification based on Camera-R...
收藏 引用
5th International conference on Artificial Intelligence in Information and Communication (ICAIIC)
作者: Seo, Hyojeong Han, Dong Seog Kyungpook Natl Univ Sch Elect & Elect Engn Daegu South Korea Kyungpook Natl Univ Sch Elect Engn Daegu South Korea
For safe driving, it is essential to accept reliable information from recognition sensors. In this paper, we present a deep learning model that classifies whether radar signals coming in are normal or abnormal. The ab... 详细信息
来源: 评论