咨询与建议

限定检索结果

文献类型

  • 426 篇 会议

馆藏范围

  • 426 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 348 篇 工学
    • 260 篇 电气工程
    • 141 篇 计算机科学与技术...
    • 88 篇 测绘科学与技术
    • 49 篇 软件工程
    • 35 篇 信息与通信工程
    • 33 篇 控制科学与工程
    • 8 篇 仪器科学与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 光学工程
    • 7 篇 航空宇航科学与技...
    • 5 篇 机械工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 289 篇 理学
    • 269 篇 物理学
    • 21 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生物学
  • 141 篇 医学
    • 141 篇 临床医学
  • 10 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 3 篇 军事学
    • 1 篇 军队指挥学
  • 1 篇 艺术学

主题

  • 82 篇 data fusion
  • 71 篇 sensor fusion
  • 54 篇 information fusi...
  • 38 篇 sensors
  • 31 篇 image fusion
  • 24 篇 fusion
  • 23 篇 target recogniti...
  • 22 篇 signal processin...
  • 20 篇 tracking
  • 20 篇 target detection
  • 19 篇 detection and tr...
  • 15 篇 fuzzy logic
  • 14 篇 target tracking
  • 14 篇 radar
  • 13 篇 sensor managemen...
  • 12 篇 sensor data fusi...
  • 12 篇 automatic target...
  • 11 篇 data modeling
  • 11 篇 filtering (signa...
  • 11 篇 situation awaren...

机构

  • 11 篇 interlink syst s...
  • 7 篇 air force res la...
  • 6 篇 interlink syst s...
  • 6 篇 air force res la...
  • 5 篇 johns hopkins un...
  • 5 篇 air force inst t...
  • 4 篇 lockheed martin ...
  • 4 篇 pob 4082 los alt...
  • 4 篇 air force res la...
  • 4 篇 usaf inst techno...
  • 4 篇 air force res la...
  • 4 篇 univ connecticut...
  • 4 篇 sci syst co inc ...
  • 3 篇 mcmaster univ ec...
  • 3 篇 rochester inst t...
  • 3 篇 us air force res...
  • 3 篇 sci syst co inc ...
  • 2 篇 veridian syst ar...
  • 2 篇 defence research...
  • 2 篇 saic burlington ...

作者

  • 30 篇 blasch erik
  • 21 篇 kadar ivan
  • 13 篇 oxley mark e.
  • 12 篇 mahler r
  • 10 篇 kadar i
  • 9 篇 kabban christine...
  • 8 篇 fenstermacher la...
  • 8 篇 bar-shalom yaako...
  • 7 篇 chong chee-yee
  • 6 篇 nicholson d
  • 6 篇 zheng yufeng
  • 6 篇 mahler ronald
  • 6 篇 salerno john
  • 5 篇 thomopoulos stel...
  • 5 篇 shirkhodaie amir
  • 5 篇 pinkus alan r.
  • 5 篇 chen genshe
  • 5 篇 liggins m
  • 4 篇 carlotto mj
  • 4 篇 grewe lynne

语言

  • 424 篇 英文
  • 2 篇 中文
检索条件"任意字段=Conference on Signal Processing, Sensor Fusion, and Target Recognition XX"
426 条 记 录,以下是51-60 订阅
排序:
A Survey of Imagery Techniques for Semantic Labeling of Human-Vehicle Interactions in Persistent Surveillance Systems
A Survey of Imagery Techniques for Semantic Labeling of Huma...
收藏 引用
conference on signal processing, sensor fusion, and target recognition xx
作者: Elangovan, Vinayak Shirkhodaie, Amir Tennessee State Univ Ctr Excellence Battlefield Sensor Fus Dept Mech & Mfg Engn Nashville TN 37203 USA
Understanding and semantic annotation of Human-Vehicle Interactions (HVI) facilitate fusion of Hard sensor (HS) and Human Intelligence (HUMINT) in a cohesive way. By characterization, classification, and discriminatio... 详细信息
来源: 评论
Machine learning model cards toward model-based system engineering analysis of resource-limited systems  32
Machine learning model cards toward model-based system engin...
收藏 引用
conference on signal processing, sensor/Information fusion, and target recognition xxXII
作者: Booth, Thomas M. Ghosh, Sudipto USAF 309th SWEG Hill AFB UT 84056 USA Colorado State Univ Ft Collins CO USA
sensor fusion combines data from a suite of sensors into an integrated solution that represents the target environment more accurately than that produced by individual sensors. New developments in Machine Learning (ML... 详细信息
来源: 评论
A simple algorithm for sensor fusion using spatial voting (unsupervised object grouping)
A simple algorithm for sensor fusion using spatial voting (u...
收藏 引用
conference on signal processing, sensor fusion, and target recognition XVII
作者: Jaenisch, Holger M. Albritton, Nathaniel G. Handley, James W. Burnett, Randel B. Caspers, Robert W. Albritton, William P., Jr. Alabama A&M Univ Dept Phys Nanosci Grp Normal AL 35762 USA Licht Strahl Engn INC Toney AL 35773 USA Amtec Corp Huntsville AL 35816 USA
We present a simple algorithm for achieving unsupervised spatially distributed object fusion using spatial voting. We achieve spatial fusion of uncertain position estimates of disparate objects. These objects are port... 详细信息
来源: 评论
Retrospectives on the Applications AI and Deep Learning in Information fusion  27
Retrospectives on the Applications AI and Deep Learning in I...
收藏 引用
conference on signal processing, sensor/Information fusion, and target recognition xxVII
作者: Kadar, Ivan Interlink Syst Sci Inc 1979 Marcus Ave Lake Success NY 11042 USA
来源: 评论
Information fusion Designed for (Robust) Action
Information Fusion Designed for (Robust) Action
收藏 引用
conference on signal processing, sensor/Information fusion, and target recognition xxIII
作者: Jones, Eric Tierno, Jorge Syst & Technol Res Woburn MA USA Barnstorm Res Corp Malden MA USA
来源: 评论
Cognitive foundations for model-based sensor fusion
Cognitive foundations for model-based sensor fusion
收藏 引用
conference on signal processing, sensor fusion, and target recognition XII
作者: Perlovsky, LI Weijers, B Mutz, CW AFRL SNHE Hanscom AFB MA USA
target detection, tracking, and sensor fusion are complicated problems, which usually are performed sequentially. First detecting targets, then tracking, then fusing multiple sensors reduces computations. This procedu... 详细信息
来源: 评论
Filter Design for Tracking of Ballistic target Missile using Seeker Measurements with Time Lag
Filter Design for Tracking of Ballistic Target Missile using...
收藏 引用
International conference on signal processing, Image processing and Pattern recognition (ICSIPR)
作者: Mukherjee, Arpita Mukherjee, Debaprasad Sengupta, Aparajita CSIR Cent Mech Engn Res Inst Elect & Instrumentat Lab Durgapur 713209 India West Bengal Univ Technol Dr BC Roy Engn Coll Dept Informat Technol Durgapur 713206 India Bengal Engn & Sci Univ Dept Elect Engn Howrah 711103 India
Here a method has been proposed to estimate the realtime state using the sensor measurement which contains lag due the mechanism of data collection and transmission to the estimator for real time state estimation. The... 详细信息
来源: 评论
Optimal Update with Multiple Out-of-Sequence Measurements
Optimal Update with Multiple Out-of-Sequence Measurements
收藏 引用
conference on signal processing, sensor fusion, and target recognition xx
作者: Zhang, Shuo Bar-Shalom, Yaakov Univ Connecticut ECE Dept Storrs CT 06269 USA
In multisensor target tracking systems receiving out-of-sequence measurements from local sensors is a common situation. In the last decade many algorithms have been proposed to update a target state with an OOSM optim... 详细信息
来源: 评论
EO and radar fusion for fine-grained target classification with a strong few-shot learning baseline  33
EO and radar fusion for fine-grained target classification w...
收藏 引用
conference on signal processing, sensor/Information fusion, and target recognition xxXIII
作者: Ballan, Luca Melo, Jorge G. O. van den Broek, Sebastiaan P. Baan, Jan Heslinga, Friso G. Huizinga, Wyke Dijk, Judith Dilo, Arta TNO Intelligent Imaging Oude Waalsdorperweg 63 NL-2597AK The Hague Netherlands
Combining data from multiple sensors to improve the overall robustness and reliability of a classification system has become crucial in many applications, from military surveillance and decision support, to autonomous... 详细信息
来源: 评论
fusion and Gaussian Mixture Based Classifiers for SONAR Data
Fusion and Gaussian Mixture Based Classifiers for SONAR Data
收藏 引用
conference on signal processing, sensor fusion, and target recognition xx
作者: Kotari, Vikas Chang, K. C. George Mason Univ Dept SEOR Fairfax VA 22030 USA
Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence detection and classification of underwater mines is essential for the safety of naval vessels. This neces... 详细信息
来源: 评论