咨询与建议

限定检索结果

文献类型

  • 4,504 篇 会议
  • 48 篇 期刊文献
  • 18 册 图书
  • 1 篇 学位论文

馆藏范围

  • 4,571 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,607 篇 工学
    • 1,696 篇 计算机科学与技术...
    • 1,111 篇 信息与通信工程
    • 989 篇 软件工程
    • 698 篇 电气工程
    • 281 篇 光学工程
    • 125 篇 电子科学与技术(可...
    • 119 篇 生物工程
    • 115 篇 控制科学与工程
    • 103 篇 仪器科学与技术
    • 97 篇 网络空间安全
    • 95 篇 生物医学工程(可授...
    • 72 篇 机械工程
    • 44 篇 化学工程与技术
    • 31 篇 安全科学与工程
    • 30 篇 动力工程及工程热...
    • 26 篇 轻工技术与工程
  • 1,246 篇 医学
    • 1,237 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 29 篇 药学(可授医学、理...
  • 1,041 篇 理学
    • 745 篇 物理学
    • 338 篇 数学
    • 128 篇 生物学
    • 105 篇 统计学(可授理学、...
    • 48 篇 系统科学
    • 47 篇 化学
  • 190 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 98 篇 图书情报与档案管...
    • 32 篇 工商管理
  • 77 篇 军事学
    • 74 篇 军队指挥学
  • 38 篇 法学
    • 30 篇 社会学
  • 10 篇 文学
  • 8 篇 经济学
  • 7 篇 农学
  • 6 篇 教育学

主题

  • 552 篇 image coding
  • 472 篇 image processing
  • 354 篇 visual communica...
  • 318 篇 visualization
  • 276 篇 image segmentati...
  • 260 篇 feature extracti...
  • 181 篇 image compressio...
  • 169 篇 video coding
  • 165 篇 image reconstruc...
  • 158 篇 cameras
  • 153 篇 humans
  • 138 篇 image quality
  • 132 篇 image retrieval
  • 126 篇 training
  • 123 篇 image edge detec...
  • 123 篇 image color anal...
  • 115 篇 image enhancemen...
  • 115 篇 image analysis
  • 113 篇 signal processin...
  • 110 篇 motion estimatio...

机构

  • 36 篇 shanghai jiao to...
  • 29 篇 institute of ima...
  • 28 篇 school of electr...
  • 24 篇 school of electr...
  • 21 篇 university of sc...
  • 18 篇 shanghai jiao to...
  • 17 篇 shanghai jiao to...
  • 16 篇 tianjin univ sch...
  • 16 篇 beijing universi...
  • 14 篇 institute for in...
  • 11 篇 school of comput...
  • 11 篇 university of el...
  • 11 篇 cas key laborato...
  • 11 篇 tsinghua univ de...
  • 10 篇 univ sci & techn...
  • 10 篇 zhejiang univers...
  • 10 篇 peking univ inst...
  • 10 篇 institute of ima...
  • 9 篇 microsoft resear...
  • 9 篇 tsinghua univ de...

作者

  • 34 篇 zhai guangtao
  • 26 篇 sumei li
  • 25 篇 song li
  • 22 篇 li sumei
  • 21 篇 guangtao zhai
  • 19 篇 li song
  • 18 篇 li li
  • 17 篇 min xiongkuo
  • 16 篇 dong liu
  • 16 篇 wen gao
  • 16 篇 shan liu
  • 15 篇 andré kaup
  • 15 篇 yang xiaokang
  • 14 篇 chen zhibo
  • 13 篇 m. vetterli
  • 13 篇 xie rong
  • 13 篇 xiongkuo min
  • 13 篇 gao wen
  • 11 篇 heming sun
  • 11 篇 zhibo chen

语言

  • 4,386 篇 英文
  • 128 篇 其他
  • 49 篇 土耳其文
  • 39 篇 中文
检索条件"任意字段=Conference on Visual Communications and Image Processing 2003"
4571 条 记 录,以下是1011-1020 订阅
排序:
Optimization of Probability Distributions for Residual Coding of Screen Content
Optimization of Probability Distributions for Residual Codin...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Hannah Och Tilo Strutz André Kaup Friedrich-Alexander University Erlangen-Nürnberg (FAU) Multimedia Communications and Signal Processing Erlangen Germany Deutsche Telekom AG Leipzig University of Telecommunications Institute of Communications Engineering Leipzig Germany
Probability distribution modeling is the basis for most competitive methods for lossless coding of screen content. One such state-of-the-art method is known as soft context formation (SCF). For each pixel to be encode... 详细信息
来源: 评论
Progressive Co-Attention Network for Fine-Grained visual Classification
Progressive Co-Attention Network for Fine-Grained Visual Cla...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Tian Zhang Dongliang Chang Zhanyu Ma Jun Guo Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China Beijing Academy of Artificial Intelligence Beijing China
Fine-grained visual classification aims to recognize images belonging to multiple sub-categories within a same category. It is a challenging task due to the inherently subtle variations among highly-confused categorie... 详细信息
来源: 评论
An Error Self-learning Semi-supervised Method for No-reference image Quality Assessment
An Error Self-learning Semi-supervised Method for No-referen...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Yingjie Feng Sumei Li Sihan Hao School of Electrical and Information Engineering Tianjin University TianJin China
In recent years, deep learning has achieved significant progress in many respects. However, unlike other research fields with millions of labeled data such as image recognition, only several thousand labeled images ar... 详细信息
来源: 评论
Deep Motion Flow Aided Face Video De-identification
Deep Motion Flow Aided Face Video De-identification
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Yunqian Wen Bo Liu Rong Xie Jingyi Cao Li Song Institute of Image Communication and Network Engineering Shanghai Jiao Tong University Shanghai China School of Computer Science University of Technology Sydney Sydney Australia
Advances in cameras and web technology have made it easy to capture and share large amounts of face videos over to an unknown audience with uncontrollable purposes. These raise increasing concerns about unwanted ident... 详细信息
来源: 评论
The Effect of SAR Speckle Removal in SAR-Optical image Fusion
The Effect of SAR Speckle Removal in SAR-Optical Image Fusio...
收藏 引用
IEEE Signal processing and communications Applications (SIU)
作者: Semih Genç ay Caner Ö zcan Bilgisayar Teknolojileri Manisa Celal Bayar &#x00DC niversitesi Manisa T&#x00FC rkiye Yaz&#x0131 l&#x0131 m M&#x00FC hendisli&#x011F i Karab&#x00FC k &#x00DC niversitesi Karab&#x00FC k T&#x00FC
Due to the imaging mechanism of Synthetic Aperture Radar (SAR) and the noise in the images, visual identification of objects in the scene is not as easy as in optical images. SAR images have limited color information ... 详细信息
来源: 评论
Learn A Compression for Objection Detection - VAE with a Bridge
Learn A Compression for Objection Detection - VAE with a Bri...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Yixin Mei Fan Li Li Li Zhu Li School of Information and Communications Engineering Xi'an Jiaotong University Xi'an China University of Science and Technology of China Hefei China University of Missouri-Kansas City Kansas City MO USA
Recent advances in sensor technology and wide deployment of visual sensors lead to a new application whereas compression of images are not mainly for pixel recovery for human consumption, instead it is for communicati... 详细信息
来源: 评论
Analyzing Time Complexity of Practical Learned image Compression Models
Analyzing Time Complexity of Practical Learned Image Compres...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Xiaohan Pan Zongyu Guo Zhibo Chen CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System University of Science and Technology of China Hefei China
We have witnessed the rapid development of learned image compression (LIC). The latest LIC models have outperformed almost all traditional image compression standards in terms of rate-distortion (RD) performance. Howe... 详细信息
来源: 评论
Deep Learning-Based Blind image Super-Resolution using Iterative Networks
Deep Learning-Based Blind Image Super-Resolution using Itera...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Asfand Yaar Hasan F. Ates Bahadir K. Gunturk School of Engineering and Natural Sciences Istanbul Medipol University Turkey
Deep learning-based single image super-resolution (SR) consistently shows superior performance compared to the traditional SR methods. However, most of these methods assume that the blur kernel used to generate the lo... 详细信息
来源: 评论
Mixed-precision Quantization with Dynamical Hessian Matrix for Object Detection Network
Mixed-precision Quantization with Dynamical Hessian Matrix f...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Zerui Yang Wen Fei Wenrui Dai Chenglin Li Junni Zou Hongkai Xiong School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University China
Mixed-precision quantization with adaptive bitwidth allocation for neural network has achieved higher compression rate and accuracy in classification task. However, it has not been well explored for object detection n... 详细信息
来源: 评论
See SIFT in a Rain: Divide-and-conquer SIFT Key Point Recovery from a Single Rainy image
See SIFT in a Rain: Divide-and-conquer SIFT Key Point Recove...
收藏 引用
IEEE visual communications and image processing (VCIP)
作者: Ping Wang Wei Wu Zhu Li Yong Liu State Key Laboratory of Integrated Services Networks Xidian University Xi'an China University of Missouri Kansas City USA
Scale-Invariant Feature Transform (SIFT) is one of the most well-known image matching methods, which has been widely applied in various visual fields. Because of the adoption of a difference of Gaussian (DoG) pyramid ... 详细信息
来源: 评论