咨询与建议

限定检索结果

文献类型

  • 14,558 篇 会议
  • 663 篇 期刊文献
  • 101 册 图书
  • 40 篇 学位论文
  • 1 篇 科技报告

馆藏范围

  • 15,362 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 11,025 篇 工学
    • 10,359 篇 计算机科学与技术...
    • 5,436 篇 软件工程
    • 1,474 篇 信息与通信工程
    • 963 篇 电气工程
    • 925 篇 控制科学与工程
    • 446 篇 生物工程
    • 223 篇 网络空间安全
    • 220 篇 化学工程与技术
    • 187 篇 机械工程
    • 175 篇 生物医学工程(可授...
    • 144 篇 电子科学与技术(可...
    • 102 篇 仪器科学与技术
    • 99 篇 安全科学与工程
  • 2,494 篇 理学
    • 1,163 篇 数学
    • 655 篇 物理学
    • 520 篇 生物学
    • 395 篇 统计学(可授理学、...
    • 241 篇 系统科学
    • 235 篇 化学
  • 2,427 篇 管理学
    • 1,755 篇 图书情报与档案管...
    • 760 篇 管理科学与工程(可...
    • 241 篇 工商管理
    • 106 篇 公共管理
  • 1,761 篇 文学
    • 1,709 篇 外国语言文学
    • 184 篇 中国语言文学
  • 514 篇 医学
    • 303 篇 临床医学
    • 284 篇 基础医学(可授医学...
    • 113 篇 公共卫生与预防医...
  • 278 篇 法学
    • 249 篇 社会学
  • 238 篇 教育学
    • 225 篇 教育学
  • 100 篇 农学
  • 98 篇 经济学
  • 9 篇 艺术学
  • 7 篇 哲学
  • 4 篇 军事学

主题

  • 3,557 篇 natural language...
  • 1,786 篇 natural language...
  • 953 篇 computational li...
  • 740 篇 semantics
  • 682 篇 machine learning
  • 613 篇 deep learning
  • 520 篇 natural language...
  • 352 篇 computational mo...
  • 343 篇 accuracy
  • 339 篇 training
  • 335 篇 large language m...
  • 335 篇 sentiment analys...
  • 325 篇 feature extracti...
  • 312 篇 data mining
  • 290 篇 speech processin...
  • 260 篇 speech recogniti...
  • 256 篇 transformers
  • 236 篇 neural networks
  • 218 篇 iterative method...
  • 212 篇 support vector m...

机构

  • 85 篇 carnegie mellon ...
  • 52 篇 university of ch...
  • 46 篇 tsinghua univers...
  • 45 篇 carnegie mellon ...
  • 43 篇 zhejiang univers...
  • 43 篇 national univers...
  • 38 篇 nanyang technolo...
  • 36 篇 university of sc...
  • 36 篇 university of wa...
  • 35 篇 univ chinese aca...
  • 34 篇 carnegie mellon ...
  • 33 篇 gaoling school o...
  • 33 篇 stanford univers...
  • 32 篇 school of artifi...
  • 32 篇 alibaba grp peop...
  • 29 篇 tsinghua univ de...
  • 28 篇 harbin institute...
  • 26 篇 microsoft resear...
  • 26 篇 language technol...
  • 26 篇 peking universit...

作者

  • 55 篇 zhou guodong
  • 50 篇 neubig graham
  • 46 篇 liu yang
  • 39 篇 sun maosong
  • 36 篇 zhang min
  • 34 篇 liu qun
  • 33 篇 smith noah a.
  • 28 篇 schütze hinrich
  • 27 篇 liu zhiyuan
  • 26 篇 wen ji-rong
  • 26 篇 lapata mirella
  • 24 篇 chang kai-wei
  • 23 篇 zhou jie
  • 23 篇 yang diyi
  • 23 篇 zhao hai
  • 23 篇 zhao wayne xin
  • 21 篇 chua tat-seng
  • 20 篇 dredze mark
  • 18 篇 biemann chris
  • 18 篇 fung pascale

语言

  • 14,282 篇 英文
  • 966 篇 其他
  • 113 篇 中文
  • 18 篇 法文
  • 14 篇 土耳其文
  • 2 篇 德文
  • 2 篇 西班牙文
  • 2 篇 俄文
检索条件"任意字段=Conference on empirical methods in natural language processing"
15363 条 记 录,以下是1001-1010 订阅
排序:
TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts
TheoremLlama: Transforming General-Purpose LLMs into Lean4 E...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Wang, Ruida Zhang, Jipeng Jia, Yizhen Pan, Rui Diao, Shizhe Pi, Renjie Zhang, Tong Hong Kong University of Science and Technology Hong Kong University of Illinois Urbana-Champaign United States NVIDIA United States
Proving mathematical theorems using computer-verifiable Formal languages (FL) like Lean significantly impacts mathematical reasoning. One approach to formal theorem proving involves generating complete proofs using La... 详细信息
来源: 评论
Advancing Process Verification for Large language Models via Tree-Based Preference Learning
Advancing Process Verification for Large Language Models via...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: He, Mingqian Shen, Yongliang Zhang, Wenqi Tan, Zeqi Lu, Weiming Zhejiang University China
Large language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales. Some methods have proven effective in boosting accuracy by introducing ext... 详细信息
来源: 评论
Zero-BertXGB: An empirical Technique for Abstract Classification in Systematic Reviews
收藏 引用
IEEE ACCESS 2025年 13卷 18418-18440页
作者: Islam, Mohammad Shariful Rony, Mohammad Abu Tareq Hossain, Md Rasel Alshathri, Samah El-Shafai, Walid Noakhali Sci & Technol Univ Dept Comp Sci & Telecommun Engn Noakhali 3814 Bangladesh Noakhali Sci & Technol Univ Dept Stat Noakhali 3814 Bangladesh Princess Nourah bint Abdulrahman Univ Coll Comp & Informat Sci Dept Informat Technol POB 84428 Riyadh 11671 Saudi Arabia Prince Sultan Univ ASSCL Comp Sci Dept Riyadh 11586 Saudi Arabia Menoufia Univ Fac Elect Engn Dept Elect & Elect Commun Engn Menoufia 32952 Egypt
classification in systematic reviews (SRs) is a crucial step in evidence synthesis but is often time-consuming and labour-intensive. This study evaluates the effectiveness of various Machine Learning (ML) models and e... 详细信息
来源: 评论
Eyes Don't Lie: Subjective Hate Annotation and Detection with Gaze
Eyes Don't Lie: Subjective Hate Annotation and Detection wit...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Alaçam, Özge Hoeken, Sanne Zarrieß, Sina Department of Linguistics Bielefeld University Germany Center for Information and Language Processing LMU Munich Germany
Hate speech is a complex and subjective phenomenon. In this paper, we present a dataset (GAZE4HATE) that provides gaze data collected in a hate speech annotation experiment. We study whether the gaze of an annotator p... 详细信息
来源: 评论
RETRIEVAL-GENERATION SYNERGY AUGMENTED LARGE language MODELS  49
RETRIEVAL-GENERATION SYNERGY AUGMENTED LARGE LANGUAGE MODELS
收藏 引用
49th IEEE International conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Feng, Zhangyin Feng, Xiaocheng Zhao, Dezhi Yang, Maojin Qin, Bing Harbin Inst Technol Harbin Peoples R China Pengcheng Lab Shenzhen Peoples R China
Large language models augmented with task-relevant documents have demonstrated impressive performance on knowledge-intensive tasks. However, regarding how to obtain effective documents, the existing methods are mainly... 详细信息
来源: 评论
AuriSRec: Adversarial User Intention Learning in Sequential Recommendation
AuriSRec: Adversarial User Intention Learning in Sequential ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Zhang, Junjie Xie, RuoBing Sun, Wenqi Lin, Leyu Zhao, Wayne Xin Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China Tencent China
With recommender systems broadly deployed in various online platforms, many efforts have been devoted to learning user preferences and building effective sequential recommenders. However, existing work mainly focuses ... 详细信息
来源: 评论
ApiQ: Finetuning of 2-Bit Quantized Large language Model
ApiQ: Finetuning of 2-Bit Quantized Large Language Model
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Liao, Baohao Herold, Christian Khadivi, Shahram Monz, Christof Language Technology Lab University of Amsterdam Netherlands eBay Inc. Aachen Germany
Memory-efficient finetuning of large language models (LLMs) has recently attracted huge attention with the increasing size of LLMs, primarily due to the constraints posed by GPU memory limitations and the effectivenes... 详细信息
来源: 评论
DC-Instruct: An Effective Framework for Generative Multi-intent Spoken language Understanding
DC-Instruct: An Effective Framework for Generative Multi-int...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Xing, Bowen Liao, Lizi Huang, Minlie Tsang, Ivor W. Beijing Key Laboratory of Knowledge Engineering for Materials Science School of Computer and Communication Engineering University of Science and Technology Beijing China Singapore Management University Singapore Group Tsinghua University China CFAR and IHPC Agency for Science Technology and Research Singapore College of Computing and Data Science Nanyang Technological University Singapore
In the realm of multi-intent spoken language understanding, recent advancements have leveraged the potential of prompt learning frameworks. However, critical gaps exist in these frameworks: the lack of explicit modeli... 详细信息
来源: 评论
Beyond natural language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication
Beyond Natural Language: LLMs Leveraging Alternative Formats...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Chen, Weize Yuan, Chenfei Yuan, Jiarui Su, Yusheng Qian, Chen Yang, Cheng Xie, Ruobing Liu, Zhiyuan Sun, Maosong Tsinghua University China Tencent China Beijing University of Posts and Telecommunications China
natural language (NL) has long been the predominant format for human cognition and communication, and by extension, has been similarly pivotal in the development and application of Large language Models (LLMs). Yet, b... 详细信息
来源: 评论
Extractive Summarization via ChatGPT for Faithful Summary Generation
Extractive Summarization via ChatGPT for Faithful Summary Ge...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Zhang, Haopeng Liu, Xiao Zhang, Jiawei Univ Calif Davis Dept Comp Sci IFM Lab Davis CA 95616 USA
Extractive summarization is a crucial task in natural language processing that aims to condense long documents into shorter versions by directly extracting sentences. The recent introduction of large language models h... 详细信息
来源: 评论