咨询与建议

限定检索结果

文献类型

  • 14,549 篇 会议
  • 662 篇 期刊文献
  • 101 册 图书
  • 40 篇 学位论文
  • 1 篇 科技报告

馆藏范围

  • 15,352 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 11,015 篇 工学
    • 10,349 篇 计算机科学与技术...
    • 5,460 篇 软件工程
    • 1,467 篇 信息与通信工程
    • 956 篇 电气工程
    • 892 篇 控制科学与工程
    • 447 篇 生物工程
    • 221 篇 网络空间安全
    • 220 篇 化学工程与技术
    • 186 篇 机械工程
    • 177 篇 生物医学工程(可授...
    • 141 篇 电子科学与技术(可...
    • 101 篇 仪器科学与技术
    • 100 篇 安全科学与工程
  • 2,486 篇 理学
    • 1,156 篇 数学
    • 654 篇 物理学
    • 520 篇 生物学
    • 394 篇 统计学(可授理学、...
    • 241 篇 系统科学
    • 232 篇 化学
  • 2,427 篇 管理学
    • 1,756 篇 图书情报与档案管...
    • 759 篇 管理科学与工程(可...
    • 241 篇 工商管理
    • 106 篇 公共管理
  • 1,762 篇 文学
    • 1,710 篇 外国语言文学
    • 184 篇 中国语言文学
  • 515 篇 医学
    • 303 篇 临床医学
    • 286 篇 基础医学(可授医学...
    • 113 篇 公共卫生与预防医...
  • 279 篇 法学
    • 249 篇 社会学
  • 239 篇 教育学
    • 226 篇 教育学
  • 100 篇 农学
  • 96 篇 经济学
  • 10 篇 艺术学
  • 7 篇 哲学
  • 4 篇 军事学

主题

  • 3,552 篇 natural language...
  • 1,789 篇 natural language...
  • 953 篇 computational li...
  • 741 篇 semantics
  • 683 篇 machine learning
  • 612 篇 deep learning
  • 520 篇 natural language...
  • 352 篇 computational mo...
  • 343 篇 accuracy
  • 339 篇 training
  • 334 篇 large language m...
  • 334 篇 sentiment analys...
  • 325 篇 feature extracti...
  • 312 篇 data mining
  • 290 篇 speech processin...
  • 260 篇 speech recogniti...
  • 255 篇 transformers
  • 236 篇 neural networks
  • 218 篇 iterative method...
  • 212 篇 support vector m...

机构

  • 85 篇 carnegie mellon ...
  • 51 篇 university of ch...
  • 46 篇 tsinghua univers...
  • 45 篇 carnegie mellon ...
  • 43 篇 zhejiang univers...
  • 43 篇 national univers...
  • 38 篇 nanyang technolo...
  • 36 篇 university of sc...
  • 36 篇 university of wa...
  • 35 篇 univ chinese aca...
  • 34 篇 carnegie mellon ...
  • 33 篇 stanford univers...
  • 32 篇 gaoling school o...
  • 32 篇 alibaba grp peop...
  • 31 篇 school of artifi...
  • 29 篇 tsinghua univ de...
  • 28 篇 harbin institute...
  • 27 篇 peking universit...
  • 26 篇 microsoft resear...
  • 26 篇 language technol...

作者

  • 55 篇 zhou guodong
  • 50 篇 neubig graham
  • 46 篇 liu yang
  • 39 篇 sun maosong
  • 36 篇 zhang min
  • 34 篇 liu qun
  • 33 篇 smith noah a.
  • 28 篇 schütze hinrich
  • 26 篇 wen ji-rong
  • 26 篇 liu zhiyuan
  • 26 篇 lapata mirella
  • 24 篇 chang kai-wei
  • 23 篇 zhou jie
  • 23 篇 yang diyi
  • 23 篇 zhao hai
  • 23 篇 zhao wayne xin
  • 21 篇 chua tat-seng
  • 20 篇 dredze mark
  • 18 篇 biemann chris
  • 18 篇 fung pascale

语言

  • 14,307 篇 英文
  • 930 篇 其他
  • 114 篇 中文
  • 18 篇 法文
  • 14 篇 土耳其文
  • 2 篇 德文
  • 2 篇 西班牙文
  • 2 篇 俄文
检索条件"任意字段=Conference on empirical methods in natural language processing"
15353 条 记 录,以下是1051-1060 订阅
排序:
Closing the Loop: Learning to Generate Writing Feedback via language Model Simulated Student Revisions
Closing the Loop: Learning to Generate Writing Feedback via ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Nair, Inderjeet Tan, Jiaye Su, Xiaotian Gere, Anne Wang, Xu Wang, Lu University of Michigan United States ETH Zürich Switzerland
Providing feedback is widely recognized as crucial for refining students' writing skills. Recent advances in language models (LMs) have made it possible to automatically generate feedback that is actionable and we... 详细信息
来源: 评论
Multi-expert Prompting Improves Reliability, Safety and Usefulness of Large language Models
Multi-expert Prompting Improves Reliability, Safety and Usef...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Long, Do Xuan Yen, Duong Ngoc Tuan, Luu Anh Kawaguchi, Kenji Kan, Min-Yen Chen, Nancy F. National University of Singapore Singapore A*STAR Singapore Nanyang Technological University Singapore
We present Multi-expert Prompting, a novel enhancement of ExpertPrompting (Xu et al., 2023), designed to improve the large language model (LLM) ***, it guides an LLM to fulfill an input instruction by simulating multi... 详细信息
来源: 评论
MolCA: Molecular Graph-language Modeling with Cross-Modal Projector and Uni-Modal Adapter
MolCA: Molecular Graph-Language Modeling with Cross-Modal Pr...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Liu, Zhiyuan Li, Sihang Luo, Yanchen Fei, Hao Cao, Yixin Kawaguchi, Kenji Wang, Xiang Chua, Tat-Seng Natl Univ Singapore Singapore Singapore Univ Sci & Technol China Hefei Singapore Singapore Management Univ Singapore Singapore Hefei Comprehens Natl Sci Ctr Inst Dataspace Inst Artificial Intelligence Hefei Singapore
language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks. However, they inherently lack 2D graph perception- a critical ability of human professionals in compr... 详细信息
来源: 评论
Novel Ensemble Sentiment Classification through Speech processing and Stacking Generalization  1
Novel Ensemble Sentiment Classification through Speech Proce...
收藏 引用
1st International conference on Electronics, Communication and Signal processing, ICECSP 2024
作者: Chowdhury, Shriya Roy, Soumo John, Mathew Chathurvedi, V Rama Chandra Das, Deepanjali Mohanty, Aparna School of Electronics Engineering Vellore Institute of Technology Vellore India
This paper introduces an innovative method for speech sentiment analysis, by employing a stacking classifier. The proposed system directly transcribes audio and extracts essential features for sentiment analysis. The ... 详细信息
来源: 评论
Information Flow Routes: Automatically Interpreting language Models at Scale
Information Flow Routes: Automatically Interpreting Language...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Ferrando, Javier Voita, Elena Universitat Politècnica de Catalunya Spain Meta AI United States
Information flows by routes inside the network via mechanisms implemented in the model. These routes can be represented as graphs where nodes correspond to token representations and edges to computations. We automatic... 详细信息
来源: 评论
A Systematic Analysis of Large language Models as Soft Reasoners: The Case of Syllogistic Inferences
A Systematic Analysis of Large Language Models as Soft Reaso...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Bertolazzi, Leonardo Gatt, Albert Bernardi, Raffaella DISI University of Trento Italy ICS Utrecht University Netherlands CIMeC and DISI University of Trento Italy
The reasoning abilities of Large language Models (LLMs) are becoming a central focus of study in NLP. In this paper, we consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in... 详细信息
来源: 评论
Evaluating Psychological Safety of Large language Models
Evaluating Psychological Safety of Large Language Models
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Li, Xingxuan Li, Yutong Qiu, Lin Joty, Shafiq Bing, Lidong DAMO Academy Alibaba Group Singapore College of Computing and Data Science NTU Singapore School of Social Sciences NTU Singapore Department of Psychology CUHK Hong Kong Salesforce Research Singapore Hupan Lab Hangzhou310023 China
In this work, we designed unbiased prompts to systematically evaluate the psychological safety of large language models (LLMs). First, we tested five different LLMs by using two personality tests: Short Dark Triad (SD...
来源: 评论
APPLS: Evaluating Evaluation Metrics for Plain language Summarization
APPLS: Evaluating Evaluation Metrics for Plain Language Summ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Guo, Yue August, Tal Leroy, Gondy Cohen, Trevor Wang, Lucy Lu University of Illinois Urbana-Champaign United States University of Arizona United States University of Washington United States Allen Institute for AI United States
While there has been significant development of models for Plain language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation... 详细信息
来源: 评论
Moral Foundations of Large language Models
Moral Foundations of Large Language Models
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Abdulhai, Marwa Serapio-García, Greg Crepy, Clément Valter, Daria Canny, John Jaques, Natasha Department of Computer Science University of California Berkeley United States Department of Psychology University of Cambridge United Kingdom
Moral foundations theory (MFT) is a social psychological theory that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People ... 详细信息
来源: 评论
Pixology: Probing the Linguistic and Visual Capabilities of Pixel-based language Models
Pixology: Probing the Linguistic and Visual Capabilities of ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Tatariya, Kushal Araujo, Vladimir Bauwens, Thomas de Lhoneux, Miryam Department of Computer Science KU Leuven Belgium Sailplane AI
Pixel-based language models have emerged as a compelling alternative to subword-based language modelling, particularly because they can represent virtually any script. PIXEL, a canonical example of such a model, is a ... 详细信息
来源: 评论