咨询与建议

限定检索结果

文献类型

  • 14,600 篇 会议
  • 627 篇 期刊文献
  • 101 册 图书
  • 37 篇 学位论文

馆藏范围

  • 15,364 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,996 篇 工学
    • 10,331 篇 计算机科学与技术...
    • 5,391 篇 软件工程
    • 1,449 篇 信息与通信工程
    • 957 篇 电气工程
    • 878 篇 控制科学与工程
    • 433 篇 生物工程
    • 222 篇 网络空间安全
    • 218 篇 化学工程与技术
    • 185 篇 机械工程
    • 177 篇 生物医学工程(可授...
    • 141 篇 电子科学与技术(可...
    • 101 篇 仪器科学与技术
    • 100 篇 安全科学与工程
  • 2,447 篇 理学
    • 1,138 篇 数学
    • 652 篇 物理学
    • 503 篇 生物学
    • 379 篇 统计学(可授理学、...
    • 240 篇 系统科学
    • 231 篇 化学
  • 2,381 篇 管理学
    • 1,726 篇 图书情报与档案管...
    • 742 篇 管理科学与工程(可...
    • 235 篇 工商管理
    • 104 篇 公共管理
  • 1,823 篇 文学
    • 1,771 篇 外国语言文学
    • 169 篇 中国语言文学
  • 503 篇 医学
    • 301 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 111 篇 公共卫生与预防医...
  • 275 篇 法学
    • 245 篇 社会学
  • 237 篇 教育学
    • 225 篇 教育学
  • 100 篇 农学
  • 93 篇 经济学
  • 10 篇 艺术学
  • 7 篇 哲学
  • 4 篇 军事学

主题

  • 3,563 篇 natural language...
  • 1,792 篇 natural language...
  • 950 篇 computational li...
  • 752 篇 semantics
  • 678 篇 machine learning
  • 620 篇 deep learning
  • 518 篇 natural language...
  • 376 篇 computational mo...
  • 368 篇 accuracy
  • 355 篇 training
  • 351 篇 sentiment analys...
  • 349 篇 large language m...
  • 337 篇 feature extracti...
  • 313 篇 data mining
  • 289 篇 speech processin...
  • 262 篇 transformers
  • 255 篇 speech recogniti...
  • 234 篇 neural networks
  • 217 篇 iterative method...
  • 216 篇 support vector m...

机构

  • 85 篇 carnegie mellon ...
  • 51 篇 university of ch...
  • 45 篇 tsinghua univers...
  • 44 篇 carnegie mellon ...
  • 42 篇 zhejiang univers...
  • 41 篇 national univers...
  • 35 篇 univ chinese aca...
  • 35 篇 nanyang technolo...
  • 35 篇 carnegie mellon ...
  • 34 篇 university of sc...
  • 34 篇 university of wa...
  • 33 篇 alibaba grp peop...
  • 32 篇 gaoling school o...
  • 32 篇 stanford univers...
  • 30 篇 tsinghua univ de...
  • 30 篇 school of artifi...
  • 28 篇 peking universit...
  • 27 篇 harbin institute...
  • 27 篇 language technol...
  • 26 篇 univ sci & techn...

作者

  • 55 篇 zhou guodong
  • 50 篇 neubig graham
  • 46 篇 liu yang
  • 39 篇 sun maosong
  • 36 篇 zhang min
  • 34 篇 liu qun
  • 31 篇 smith noah a.
  • 29 篇 lapata mirella
  • 28 篇 schütze hinrich
  • 26 篇 wen ji-rong
  • 26 篇 liu zhiyuan
  • 24 篇 chang kai-wei
  • 23 篇 zhou jie
  • 23 篇 yang diyi
  • 23 篇 zhao hai
  • 23 篇 zhao wayne xin
  • 22 篇 wang wei
  • 21 篇 chua tat-seng
  • 20 篇 dredze mark
  • 18 篇 biemann chris

语言

  • 13,828 篇 英文
  • 1,418 篇 其他
  • 123 篇 中文
  • 18 篇 法文
  • 14 篇 土耳其文
  • 2 篇 德文
  • 2 篇 西班牙文
  • 2 篇 俄文
检索条件"任意字段=Conference on empirical methods in natural language processing"
15365 条 记 录,以下是1241-1250 订阅
排序:
FROM WORDS TO WIRES: Generating Functioning Electronic Devices from natural language Descriptions
FROM WORDS TO WIRES: Generating Functioning Electronic Devic...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Jansen, Peter Univ Arizona Tucson AZ 85721 USA
In this work, we show that contemporary language models have a previously unknown skill - the capacity for electronic circuit design from high-level textual descriptions, akin to code generation. We introduce two benc... 详细信息
来源: 评论
Large language Models for Propaganda Span Annotation
Large Language Models for Propaganda Span Annotation
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Hasanain, Maram Ahmad, Fatema Alam, Firoj Qatar Computing Research Institute HBKU Qatar
The use of propagandistic techniques in online content has increased in recent years aiming to manipulate online audiences. Fine-grained propaganda detection and extraction of textual spans where propaganda techniques... 详细信息
来源: 评论
Construction and Application of Text Classification Model under natural language processing  24
Construction and Application of Text Classification Model un...
收藏 引用
International conference on Modeling, natural language processing and Machine Learning (CMNM)
作者: Sun, Zhongnuo Gao, Pan Technol Vocat Coll Dezhou Dezhou Lectromech Engn Sch Yucheng 251200 Shandong Peoples R China
With the prevalence of the Internet and various types of social media, our daily life is surrounded by a huge amount of text information, which can provide us with the convenience of accessing information and communic... 详细信息
来源: 评论
Knowledge-Augmented language Model Verification
Knowledge-Augmented Language Model Verification
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Baek, Jinheon Jeong, Soyeong Kang, Minki Park, Jong C. Hwang, Sung Ju Korea Adv Inst Sci & Technol Daejeon South Korea
Recent language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since ... 详细信息
来源: 评论
An empirical Evaluation of Out-of-Distribution Detection Using Pretrained language Models  5
An Empirical Evaluation of Out-of-Distribution Detection Usi...
收藏 引用
5th International conference on Control and Robotics (ICCR)
作者: Yoon, Byungmu Kim, Jaeyoung Gachon Univ Seongnam Si Gyeonggi Do South Korea
In natural language processing (NLP) tasks, detecting out-of-distribution (OOD) samples is essential to safely deploy a language model in real-world problems. Recently, several studies report that pre-trained language... 详细信息
来源: 评论
Fisher Information-based Efficient Curriculum Federated Learning with Large language Models
Fisher Information-based Efficient Curriculum Federated Lear...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Liu, Ji Ren, Jiaxiang Jin, Ruoming Zhang, Zijie Zhou, Yang Valduriez, Patrick Dou, Dejing HiThink Research Zhejiang Hangzhou China Auburn University Auburn United States Kent State University Kent United States University of Texas at San Antonio San Antonio United States Inria University of Montpellier CNRS LIRMM France LNCC Petropolis Brazil Fudan University Shanghai China BEDI Cloud Beijing China
As a promising paradigm to collaboratively train models with decentralized data, Federated Learning (FL) can be exploited to fine-tune Large language Models (LLMs). While LLMs correspond to huge size, the scale of the... 详细信息
来源: 评论
ICU: Conquering language Barriers in Vision-and-language Modeling by Dividing the Tasks into Image Captioning and language Understanding
ICU: Conquering Language Barriers in Vision-and-Language Mod...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Wu, Guojun Univ Zurich Dept Computat Linguist Zurich Switzerland
Most multilingual vision-and-language (V&L) research aims to accomplish multilingual and multimodal capabilities within one model. However, the scarcity of multilingual captions for images has hindered the develop... 详细信息
来源: 评论
Are Large language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions
Are Large Language Models Good Classifiers? A Study on Edit ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Ruan, Qian Kuznetsov, Ilia Gurevych, Iryna Technical University of Darmstadt Germany
Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classificatio... 详细信息
来源: 评论
Aligning language Models to Explicitly Handle Ambiguity
Aligning Language Models to Explicitly Handle Ambiguity
收藏 引用
29th conference on empirical methods in natural language processing
作者: Kim, Hyuhng Joon Kim, Youna Park, Cheonbok Kim, Junyeob Park, Choonghyun Yoo, Kang Min Lee, Sang-goo Kim, Taeuk Seoul Natl Univ Seoul 1 South Korea NAVER Cloud Seongnam South Korea KAIST AI Daejeon South Korea NAVER AI Lab Seongnam South Korea IntelliSys Seoul South Korea Hanyang Univ Seoul South Korea
In interactions between users and language model agents, user utterances frequently exhibit ellipsis (omission of words or phrases) or imprecision (lack of exactness) to prioritize efficiency. This can lead to varying... 详细信息
来源: 评论
Query-OPT: Optimizing Inference of Large language Models via Multi-Query Instructions in Meeting Summarization
Query-OPT: Optimizing Inference of Large Language Models via...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Laskar, Md Tahmid Rahman Khasanova, Elena Fu, Xue-Yong Chen, Cheng Bhushan, Shashi T.N. Dialpad Inc VancouverBC Canada
This work focuses on the task of query-based meeting summarization, in which the summary of a context (meeting transcript) is generated in response to a specific query. When using Large language Models (LLMs) for this... 详细信息
来源: 评论