咨询与建议

限定检索结果

文献类型

  • 14,600 篇 会议
  • 627 篇 期刊文献
  • 101 册 图书
  • 37 篇 学位论文

馆藏范围

  • 15,364 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,996 篇 工学
    • 10,331 篇 计算机科学与技术...
    • 5,391 篇 软件工程
    • 1,449 篇 信息与通信工程
    • 957 篇 电气工程
    • 878 篇 控制科学与工程
    • 433 篇 生物工程
    • 222 篇 网络空间安全
    • 218 篇 化学工程与技术
    • 185 篇 机械工程
    • 177 篇 生物医学工程(可授...
    • 141 篇 电子科学与技术(可...
    • 101 篇 仪器科学与技术
    • 100 篇 安全科学与工程
  • 2,447 篇 理学
    • 1,138 篇 数学
    • 652 篇 物理学
    • 503 篇 生物学
    • 379 篇 统计学(可授理学、...
    • 240 篇 系统科学
    • 231 篇 化学
  • 2,381 篇 管理学
    • 1,726 篇 图书情报与档案管...
    • 742 篇 管理科学与工程(可...
    • 235 篇 工商管理
    • 104 篇 公共管理
  • 1,823 篇 文学
    • 1,771 篇 外国语言文学
    • 169 篇 中国语言文学
  • 503 篇 医学
    • 301 篇 临床医学
    • 282 篇 基础医学(可授医学...
    • 111 篇 公共卫生与预防医...
  • 275 篇 法学
    • 245 篇 社会学
  • 237 篇 教育学
    • 225 篇 教育学
  • 100 篇 农学
  • 93 篇 经济学
  • 10 篇 艺术学
  • 7 篇 哲学
  • 4 篇 军事学

主题

  • 3,563 篇 natural language...
  • 1,792 篇 natural language...
  • 950 篇 computational li...
  • 752 篇 semantics
  • 678 篇 machine learning
  • 620 篇 deep learning
  • 518 篇 natural language...
  • 376 篇 computational mo...
  • 368 篇 accuracy
  • 355 篇 training
  • 351 篇 sentiment analys...
  • 349 篇 large language m...
  • 337 篇 feature extracti...
  • 313 篇 data mining
  • 289 篇 speech processin...
  • 262 篇 transformers
  • 255 篇 speech recogniti...
  • 234 篇 neural networks
  • 217 篇 iterative method...
  • 216 篇 support vector m...

机构

  • 85 篇 carnegie mellon ...
  • 51 篇 university of ch...
  • 45 篇 tsinghua univers...
  • 44 篇 carnegie mellon ...
  • 42 篇 zhejiang univers...
  • 41 篇 national univers...
  • 35 篇 univ chinese aca...
  • 35 篇 nanyang technolo...
  • 35 篇 carnegie mellon ...
  • 34 篇 university of sc...
  • 34 篇 university of wa...
  • 33 篇 alibaba grp peop...
  • 32 篇 gaoling school o...
  • 32 篇 stanford univers...
  • 30 篇 tsinghua univ de...
  • 30 篇 school of artifi...
  • 28 篇 peking universit...
  • 27 篇 harbin institute...
  • 27 篇 language technol...
  • 26 篇 univ sci & techn...

作者

  • 55 篇 zhou guodong
  • 50 篇 neubig graham
  • 46 篇 liu yang
  • 39 篇 sun maosong
  • 36 篇 zhang min
  • 34 篇 liu qun
  • 31 篇 smith noah a.
  • 29 篇 lapata mirella
  • 28 篇 schütze hinrich
  • 26 篇 wen ji-rong
  • 26 篇 liu zhiyuan
  • 24 篇 chang kai-wei
  • 23 篇 zhou jie
  • 23 篇 yang diyi
  • 23 篇 zhao hai
  • 23 篇 zhao wayne xin
  • 22 篇 wang wei
  • 21 篇 chua tat-seng
  • 20 篇 dredze mark
  • 18 篇 biemann chris

语言

  • 13,828 篇 英文
  • 1,418 篇 其他
  • 123 篇 中文
  • 18 篇 法文
  • 14 篇 土耳其文
  • 2 篇 德文
  • 2 篇 西班牙文
  • 2 篇 俄文
检索条件"任意字段=Conference on empirical methods in natural language processing"
15365 条 记 录,以下是1321-1330 订阅
排序:
Activation Scaling for Steering and Interpreting language Models
Activation Scaling for Steering and Interpreting Language Mo...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Stoehr, Niklas Du, Kevin Snæbjarnarson, Vésteinn West, Robert Cotterell, Ryan Schein, Aaron ETH Zürich Switzerland University of Copenhagen Denmark EPFL Switzerland The University of Chicago United States
Given the prompt "Rome is in", can we steer a language model to flip its prediction of an incorrect token "France" to a correct token "Italy" by only multiplying a few relevant activation... 详细信息
来源: 评论
Implicit Personalization in language Models: A Systematic Study
Implicit Personalization in Language Models: A Systematic St...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Jin, Zhijing Heil, Nils Liu, Jiarui Dhuliawala, Shehzaad Qi, Yahang Schölkopf, Bernhard Mihalcea, Rada Sachan, Mrinmaya University of Toronto Canada TUM Germany CMU United States ETH Zürich Switzerland MPI Germany University of Michigan United States
Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work ha...
来源: 评论
Statistically Profiling Biases in natural language Reasoning Datasets and Models
Statistically Profiling Biases in Natural Language Reasoning...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Huang, Shanshan Zhu, Kenny Q. Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Texas Arlington Arlington TX 76019 USA
Recent studies have shown that many natural language understanding and reasoning datasets contain statistical cues that can be exploited by NLP models, resulting in an overestimation of their capabilities. Existing me... 详细信息
来源: 评论
RULE: Reliable Multimodal RAG for Factuality in Medical Vision language Models
RULE: Reliable Multimodal RAG for Factuality in Medical Visi...
收藏 引用
29th conference on empirical methods in natural language processing
作者: Xia, Peng Zhu, Kangyu Li, Haoran Zhu, Hongtu Li, Yun Li, Gang Zhang, Linjun Yao, Huaxiu UNC Chapel Hill Chapel Hill NC 27599 USA Brown Univ Providence RI USA PolyU Hong Kong Peoples R China Rutgers State Univ New Brunswick NJ USA
The recent emergence of Medical Large Vision language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align wit... 详细信息
来源: 评论
Are Large language Models Consistent over Value-laden Questions?
Are Large Language Models Consistent over Value-laden Questi...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Moore, Jared Deshpande, Tanvi Yang, Diyi Stanford University United States
Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value ... 详细信息
来源: 评论
What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models
What if...?: Thinking Counterfactual Keywords Helps to Mitig...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Kim, Junho Kim, Yeonju Ro, Yong Man Integrated Vision and Language Lab KAIST Korea Republic of
This paper presents a way of enhancing the reliability of Large Multi-modal Models (LMMs) in addressing hallucination, where the models generate cross-modal inconsistent responses. Without additional training, we prop... 详细信息
来源: 评论
BiasDora: Exploring Hidden Biased Associations in Vision-language Models
BiasDora: Exploring Hidden Biased Associations in Vision-Lan...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Raj, Chahat Mukherjee, Anjishnu Caliskan, Aylin Anastasopoulos, Antonios Zhu, Ziwei George Mason University United States University of Washington United States Archimedes AI Research Unit RC Athena Greece
Existing works examining Vision-language Models (VLMs) for social biases predominantly focus on a limited set of documented bias associations, such as gender↔profession or race↔crime. This narrow scope often overlooks... 详细信息
来源: 评论
Code-Switched language Identification is Harder Than You Think  18
Code-Switched Language Identification is Harder Than You Thi...
收藏 引用
18th conference of the European-Chapter of the Association-for-Computational-Linguistics (EACL)
作者: Burchell, Laurie Birch, Alexandra Thompson, Robert P. Heafield, Kenneth Univ Edinburgh Sch Informat Inst Language Cognit & Computat 10 Crichton St Edinburgh EH8 9AB Midlothian Scotland Univ Cambridge Dept Mat Sci & Met 27 Charles Babbage Rd Cambridge CB3 0FS England
Code switching (CS) is a very common phenomenon in written and spoken communication but one that is handled poorly by many natural language processing (NLP) applications. Looking to the application of building CS corp... 详细信息
来源: 评论
An empirical study of text-based machine learning models for vulnerability detection
收藏 引用
empirical SOFTWARE ENGINEERING 2023年 第2期28卷 1-45页
作者: Napier, Kollin Bhowmik, Tanmay Wang, Shaowei Mississippi State Univ Dept Comp Sci & Engn Mississippi State MS 39762 USA Univ Manitoba Dept Comp Sci Winnipeg MB Canada
With an increase in complexity and severity, it is becoming harder to identify and mitigate vulnerabilities. Although traditional tools remain useful, machine learning models are being adopted to expand efforts. To he... 详细信息
来源: 评论
Remember This Event That Year? Assessing Temporal Information and Understanding in Large language Models
Remember This Event That Year? Assessing Temporal Informatio...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Beniwal, Himanshu Patel, Dishant Kowsik Nandagopan, D. Ladia, Hritik Yadav, Ankit Singh, Mayank Department of Computer Science and Engineering Indian Institute of Technology Gandhinagar India
Large language Models (LLMs) are increasingly ubiquitous, yet their ability to retain and reason about temporal information remains limited, hindering their application in real-world scenarios where understanding the ... 详细信息
来源: 评论