咨询与建议

限定检索结果

文献类型

  • 14,463 篇 会议
  • 654 篇 期刊文献
  • 101 册 图书
  • 40 篇 学位论文
  • 1 篇 科技报告

馆藏范围

  • 15,258 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 10,944 篇 工学
    • 10,283 篇 计算机科学与技术...
    • 5,408 篇 软件工程
    • 1,463 篇 信息与通信工程
    • 954 篇 电气工程
    • 880 篇 控制科学与工程
    • 446 篇 生物工程
    • 221 篇 网络空间安全
    • 220 篇 化学工程与技术
    • 186 篇 机械工程
    • 174 篇 生物医学工程(可授...
    • 142 篇 电子科学与技术(可...
    • 101 篇 仪器科学与技术
    • 99 篇 安全科学与工程
  • 2,473 篇 理学
    • 1,150 篇 数学
    • 649 篇 物理学
    • 518 篇 生物学
    • 391 篇 统计学(可授理学、...
    • 241 篇 系统科学
    • 232 篇 化学
  • 2,416 篇 管理学
    • 1,748 篇 图书情报与档案管...
    • 757 篇 管理科学与工程(可...
    • 239 篇 工商管理
    • 104 篇 公共管理
  • 1,761 篇 文学
    • 1,709 篇 外国语言文学
    • 184 篇 中国语言文学
  • 510 篇 医学
    • 299 篇 临床医学
    • 283 篇 基础医学(可授医学...
    • 111 篇 公共卫生与预防医...
  • 276 篇 法学
    • 248 篇 社会学
  • 237 篇 教育学
    • 224 篇 教育学
  • 100 篇 农学
  • 96 篇 经济学
  • 9 篇 艺术学
  • 7 篇 哲学
  • 4 篇 军事学

主题

  • 3,535 篇 natural language...
  • 1,768 篇 natural language...
  • 952 篇 computational li...
  • 740 篇 semantics
  • 681 篇 machine learning
  • 609 篇 deep learning
  • 520 篇 natural language...
  • 347 篇 computational mo...
  • 338 篇 training
  • 333 篇 accuracy
  • 331 篇 sentiment analys...
  • 329 篇 large language m...
  • 321 篇 feature extracti...
  • 311 篇 data mining
  • 290 篇 speech processin...
  • 260 篇 speech recogniti...
  • 252 篇 transformers
  • 235 篇 neural networks
  • 217 篇 iterative method...
  • 212 篇 support vector m...

机构

  • 85 篇 carnegie mellon ...
  • 51 篇 university of ch...
  • 45 篇 tsinghua univers...
  • 45 篇 carnegie mellon ...
  • 43 篇 zhejiang univers...
  • 43 篇 national univers...
  • 38 篇 nanyang technolo...
  • 36 篇 university of wa...
  • 35 篇 univ chinese aca...
  • 34 篇 university of sc...
  • 34 篇 carnegie mellon ...
  • 33 篇 stanford univers...
  • 32 篇 gaoling school o...
  • 32 篇 school of artifi...
  • 32 篇 alibaba grp peop...
  • 29 篇 tsinghua univ de...
  • 28 篇 harbin institute...
  • 27 篇 language technol...
  • 27 篇 peking universit...
  • 26 篇 microsoft resear...

作者

  • 55 篇 zhou guodong
  • 50 篇 neubig graham
  • 46 篇 liu yang
  • 39 篇 sun maosong
  • 36 篇 zhang min
  • 34 篇 liu qun
  • 33 篇 smith noah a.
  • 28 篇 schütze hinrich
  • 27 篇 liu zhiyuan
  • 27 篇 lapata mirella
  • 26 篇 wen ji-rong
  • 24 篇 chang kai-wei
  • 23 篇 zhou jie
  • 23 篇 yang diyi
  • 23 篇 zhao hai
  • 23 篇 zhao wayne xin
  • 21 篇 chua tat-seng
  • 20 篇 dredze mark
  • 18 篇 biemann chris
  • 18 篇 fung pascale

语言

  • 14,662 篇 英文
  • 482 篇 其他
  • 106 篇 中文
  • 18 篇 法文
  • 15 篇 土耳其文
  • 2 篇 西班牙文
  • 2 篇 俄文
检索条件"任意字段=Conference on empirical methods in natural language processing"
15259 条 记 录,以下是491-500 订阅
排序:
Searching for Best Practices in Retrieval-Augmented Generation
Searching for Best Practices in Retrieval-Augmented Generati...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Wang, Xiaohua Wang, Zhenghua Gao, Xuan Zhang, Feiran Wu, Yixin Xu, Zhibo Shi, Tianyuan Wang, Zhengyuan Li, Shizheng Qian, Qi Yin, Ruicheng Lv, Changze Zheng, Xiaoqing Huang, Xuanjing School of Computer Science Fudan University Shanghai Key Laboratory of Intelligent Information Processing Shanghai China
Retrieval-augmented generation (RAG) techniques have proven to be effective in integrating up-to-date information, mitigating hallucinations, and enhancing response quality, particularly in specialized domains. While ... 详细信息
来源: 评论
Evaluating Large language Models via Linguistic Profiling
Evaluating Large Language Models via Linguistic Profiling
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Miaschi, Alessio Dell'Orletta, Felice Venturi, Giulia ItaliaNLP Lab Pisa Italy
Large language Models (LLMs) undergo extensive evaluation against various benchmarks collected in established leaderboards to assess their performance across multiple tasks. However, to the best of our knowledge, ther... 详细信息
来源: 评论
HateCOT: An Explanation-Enhanced Dataset for Generalizable Offensive Speech Detection via Large language Models
HateCOT: An Explanation-Enhanced Dataset for Generalizable O...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Nghiem, Huy Daumé, Hal University of Maryland United States Microsoft Research United States
The widespread use of social media necessitates reliable and efficient detection of offensive content to mitigate harmful effects. Although sophisticated models perform well on individual datasets, they often fail to ... 详细信息
来源: 评论
Adaptable Moral Stances of Large language Models on Sexist Content: Implications for Society and Gender Discourse
Adaptable Moral Stances of Large Language Models on Sexist C...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Guo, Rongchen Nejadgholi, Isar Dawkins, Hillary Fraser, Kathleen C. Kiritchenko, Svetlana University of Ottawa Ottawa Canada National Research Council Canada Ottawa Canada
This work provides an explanatory view of how LLMs can apply moral reasoning to both criticize and defend sexist *** assessed eight large language models, all of which demonstrated the capability to provide explanatio... 详细信息
来源: 评论
MAgÏC: Investigation of Large language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration
MAgÏC: Investigation of Large Language Model Powered Multi-...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Xu, Lin Hu, Zhiyuan Zhou, Daquan Ren, Hongyu Dong, Zhen Keutzer, Kurt Ng, See-Kiong Feng, Jiashi National University of Singapore Singapore ByteDance China Stanford University United States UC Berkeley United States
Large language Models (LLMs) have significantly advanced natural language processing, demonstrating exceptional reasoning, tool usage, and memory capabilities. As their applications expand into multi-agent environment... 详细信息
来源: 评论
Detecting Online Community Practices with Large language Models: A Case Study of Pro-Ukrainian Publics on Twitter
Detecting Online Community Practices with Large Language Mod...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Kasianenko, Kateryna Khanehzar, Shima Wan, Stephen Dehghan, Ehsan Bruns, Axel Digital Media Research Centre Queensland University of Technology Australia Data61 CSIRO Australia
Communities on social media display distinct patterns of linguistic expression and behaviour, collectively referred to as *** practices can be traced in textual exchanges, and reflect the intentions, knowledge, values... 详细信息
来源: 评论
Exploring Automated Keyword Mnemonics Generation with Large language Models via Overgenerate-and-Rank
Exploring Automated Keyword Mnemonics Generation with Large ...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Lee, Jaewook McNichols, Hunter Lan, Andrew University of Massachusetts Amherst United States
In this paper, we study an under-explored area of language and vocabulary learning: keyword mnemonics, a technique for memorizing vocabulary through memorable associations with a target word via a verbal cue. Typicall... 详细信息
来源: 评论
Conceptual structure coheres in human cognition but not in large language models
Conceptual structure coheres in human cognition but not in l...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Suresh, Siddharth Mukherjee, Kushin Yu, Xizheng Huang, Wei-Chun Padua, Lisa Rogers, Timothy T. Univ Wisconsin Madison Madison WI 53706 USA Albany State Univ Albany GA USA
Neural network models of language have long been used as a tool for developing hypotheses about conceptual representation in the mind and brain. For many years, such use involved extracting vector-space representation... 详细信息
来源: 评论
Exchange-of-Thought: Enhancing Large language Model Capabilities through Cross-Model Communication
Exchange-of-Thought: Enhancing Large Language Model Capabili...
收藏 引用
conference on empirical methods in natural language processing (EMNLP)
作者: Yin, Zhangyue Sun, Qiushi Chang, Cheng Guo, Qipeng Dai, Junqi Huang, Xuanjing Qin, Xipeng Fudan Univ Sch Comp Sci Shanghai Peoples R China Natl Univ Singapore Singapore Singapore Shanghai AI Lab Shanghai Peoples R China
Large language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique. Despite this progress, their reasoning is often constrained by their intrinsic und... 详细信息
来源: 评论
What do Large language Models Need for Machine Translation Evaluation?
What do Large Language Models Need for Machine Translation E...
收藏 引用
2024 conference on empirical methods in natural language processing, EMNLP 2024
作者: Qian, Shenbin Sindhujan, Archchana Kabra, Minnie Kanojia, Diptesh Orăsan, Constantin Ranasinghe, Tharindu Blain, Frédéric Centre for Translation Studies University of Surrey United Kingdom Institute for People-Centred AI University of Surrey United Kingdom India Lancaster University United Kingdom Tilburg University Netherlands
Leveraging large language models (LLMs) for various natural language processing tasks has led to superlative claims about their performance. For the evaluation of machine translation (MT), existing research shows that... 详细信息
来源: 评论