咨询与建议

限定检索结果

文献类型

  • 61 篇 会议
  • 5 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 69 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 46 篇 计算机科学与技术...
    • 20 篇 软件工程
    • 10 篇 电气工程
    • 9 篇 信息与通信工程
    • 7 篇 生物工程
    • 6 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 动力工程及工程热...
    • 2 篇 土木工程
    • 2 篇 安全科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
  • 25 篇 理学
    • 16 篇 数学
    • 12 篇 统计学(可授理学、...
    • 10 篇 生物学
    • 1 篇 物理学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 公共管理
  • 7 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
    • 2 篇 特种医学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
    • 2 篇 作物学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 3 篇 learning systems
  • 3 篇 training data
  • 3 篇 artificial intel...
  • 3 篇 bayesian network...
  • 3 篇 monte carlo meth...
  • 3 篇 training
  • 2 篇 internet of thin...
  • 2 篇 mixture models
  • 2 篇 support vector m...
  • 2 篇 deep learning
  • 2 篇 continual learni...
  • 2 篇 natural language...
  • 2 篇 neural networks
  • 2 篇 data mining
  • 2 篇 computational mo...
  • 2 篇 statistical lear...
  • 2 篇 probability
  • 2 篇 classification (...
  • 2 篇 machine learning...

机构

  • 2 篇 princeton univ p...
  • 2 篇 university of ou...
  • 1 篇 samsung res amer...
  • 1 篇 massachusetts in...
  • 1 篇 ulsan natl inst ...
  • 1 篇 linkedin corp mo...
  • 1 篇 palo alto resear...
  • 1 篇 ben-gurion unive...
  • 1 篇 international co...
  • 1 篇 southern new ham...
  • 1 篇 seoul natl univ ...
  • 1 篇 sheikh zayed ins...
  • 1 篇 king’s college l...
  • 1 篇 indiana universi...
  • 1 篇 at and t labs-re...
  • 1 篇 fujitsu technolo...
  • 1 篇 michigan state u...
  • 1 篇 univ s florida t...
  • 1 篇 univ minnesota m...
  • 1 篇 department of co...

作者

  • 2 篇 pan shijia
  • 2 篇 xu susu
  • 2 篇 yu tong
  • 1 篇 ziegler andreas
  • 1 篇 dutta saikat
  • 1 篇 d’hondt robbe
  • 1 篇 singh m.m.
  • 1 篇 yeredor arie
  • 1 篇 brian lee
  • 1 篇 falk catherine t...
  • 1 篇 hoppe frederik
  • 1 篇 mandayam narayan...
  • 1 篇 yannick deville
  • 1 篇 li cheng
  • 1 篇 d. vergyri
  • 1 篇 porras antonio r...
  • 1 篇 sabek ibrahim
  • 1 篇 benmarhnia tarik
  • 1 篇 jaganmohan chand...
  • 1 篇 staszewski w.j.

语言

  • 64 篇 英文
  • 3 篇 其他
  • 3 篇 中文
检索条件"任意字段=First International Workshop on Deterministic and Statistical Methods in Machine Learning"
69 条 记 录,以下是41-50 订阅
排序:
Dimensionality Reduction in Boolean Data: Comparison of Four BMF methods  1st
Dimensionality Reduction in Boolean Data: Comparison of Four...
收藏 引用
1st international workshop on Clustering High-Dimensional Data (CHDD)
作者: Bartl, Eduard Belohlavek, Radim Osicka, Petr Rezankova, Hana Palacky Univ Dept Comp Sci Data Anal & Modeling Lab DAMOL CR-77147 Olomouc Czech Republic Univ Econ Fac Informat & Stat Dept Stat & Probabil Prague Czech Republic
We compare four methods for Boolean matrix factorization (BMF). The oldest of these methods is the 8M method implemented in the BMDP statistical software package developed in the 1960s. The three other methods were de... 详细信息
来源: 评论
BLIND SEPARATION OF SPATIALLY-BLOCK-SPARSE SOURCES FROM ORTHOGONAL MIXTURES
BLIND SEPARATION OF SPATIALLY-BLOCK-SPARSE SOURCES FROM ORTH...
收藏 引用
23rd IEEE international workshop on machine learning for Signal Processing (MLSP)
作者: Lindenbaum, Ofir Yeredor, Arie Vitek, Ran Mishali, Moshe Tel Aviv Univ Sch Elect Engn IL-69978 Tel Aviv Israel Altair Hod Hasharon Israel EZ Chip Yokneam Israel
We addresses the classical problem of blind separation of a static linear mixture, where separation is not based on statistical assumptions (such as independence) regarding the sources, but rather on their spatial (bl... 详细信息
来源: 评论
Designing a Multi-Dimensional Space for Hybrid Information Extraction
Designing a Multi-Dimensional Space for Hybrid Information E...
收藏 引用
23rd international workshop on Database and Expert Systems Applications (DEXA)
作者: Feilmayr, Christina Vojinovic, Klaudija Proell, Birgit Johannes Kepler Univ Linz Inst Applicat Oriented Knowledge Proc FAW A-4040 Linz Austria
Information extraction systems are developed for various specific application domains to manage an increasing amount of unstructured data. The majority build either upon the knowledge-based approach, which promises hi... 详细信息
来源: 评论
Real-time statistical background learning for foreground detection under unstable illuminations
Real-time statistical background learning for foreground det...
收藏 引用
11th IEEE international Conference on machine learning and Applications (ICMLA)
作者: Li, Dawei Xu, Lihong Goodman, Erik Tongji Univ Dept Control Sci & Engn Shanghai Peoples R China Michigan State Univ Dept Elect & Comp Engn E Lansing MI 48824 USA
This work proposes a fast background learning algorithm for foreground detection under changing illumination. Gaussian Mixture Model (GMM) is an effective statistical model in background learning. We first focus on Ti... 详细信息
来源: 评论
Application of Data Mining to Zheng Studies of Chinese Medicine based on CER
Application of Data Mining to Zheng Studies of Chinese Medic...
收藏 引用
IEEE international Conference on Bioinformatics and Biomedicine workshops (BIBMW)
作者: Cai, Ye-feng Zhang, Yue Liang, Zhao-hui Guangzhou Univ Chinese Med Affiliated Hosp 2 Guangzhou Guangdong Peoples R China Guangzhou Univ Chinese Med Sch Clin Med Guangzhou Peoples R China
Comparative effectiveness research (CER) is a new clinical study model featured by its strategic framework consists of four categories and three themes. The core strategy of CER is to conduct observational longitude r... 详细信息
来源: 评论
A distributed kernel summation framework for general-dimension machine learning
A distributed kernel summation framework for general-dimensi...
收藏 引用
12th SIAM international Conference on Data Mining, SDM 2012
作者: Lee, Dongryeol Vuduc, Richard Gray, Alexander G. Georgia Institute of Technology United States
Kernel summations are a ubiquitous key computational bottleneck in many data analysis methods. In this paper, we attempt to marry, for the first time, the best relevant techniques in parallel computing, where kernel s... 详细信息
来源: 评论
machine learning for Vision-Based Motion Analysis: Theory and Techniques
收藏 引用
2012年
作者: Liang Wang Guoying Zhao Li Cheng Matti Pietikinen
Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual...
来源: 评论
Real-Time statistical Background learning for Foreground Detection under Unstable Illuminations
Real-Time Statistical Background Learning for Foreground Det...
收藏 引用
international Conference on machine learning and Applications (ICMLA)
作者: Dawei Li Lihong Xu Erik Goodman Dept. of Control Science and Engineering Tongji University Shanghai China Dept. of Electrical and Computer Engineering Michigan State University East Lansing USA
This work proposes a fast background learning algorithm for foreground detection under changing illumination. Gaussian Mixture Model (GMM) is an effective statistical model in background learning. We first focus on Ti... 详细信息
来源: 评论
Stochastic relational processes: Efficient inference and applications
收藏 引用
machine learning 2011年 第2期82卷 239-272页
作者: Thon, Ingo Landwehr, Niels De Raedt, Luc Katholieke Univ Leuven Dept Comp Sci B-3001 Heverlee Belgium Univ Potsdam Dept Comp Sci D-14482 Potsdam Germany
One of the goals of artificial intelligence is to develop agents that learn and act in complex environments. Realistic environments typically feature a variable number of objects, relations amongst them, and non-deter... 详细信息
来源: 评论
Impact damage characterisation using a statistical approach
Impact damage characterisation using a statistical approach
收藏 引用
8th international workshop on Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures
作者: Sultan, M.T.H. Worden, K. Staszewski, W.J. Department of Aerospace Engineering Faculty of Engineering University Putra Malaysia 43400 Serdang Selangor Darul Ehsan Malaysia Department of Mechanical Engineering University of Sheffield Mappin Street Sheffield S1 3JD United Kingdom
Many of the materials utilised in current technologies, especially those used in the aerospace industry, require an unusual combination of properties that cannot be met by conventional metallic, ceramic or polymeric m... 详细信息
来源: 评论